• Title/Summary/Keyword: Nelder Mead

검색결과 43건 처리시간 0.032초

형상 분석에 의한 안경렌즈의 비구면 계수 추출 방법 (A method to extract the aspherical surface equation from the unknown ophthalmic lens)

  • 이호철;이남영;김건희;송창규
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.430-433
    • /
    • 2004
  • The ophthalmic lens manufacturing processes need to extract the aspherical surface equation from the unknown surface since its real profile can be adjusted by the process variables to make the ideal curve without the optical aberration. This paper presents a procedure to get the aspherical surface equation of an aspherical ophthalmic lens. Aspherical form generally consists of the Schulz formula to describe its profile. Therefore, the base curvature, conic constant, and high-order polynomial coefficient should be set to the original design equation. To find an estimated aspherical profile, firstly lens profile is measured by a contact profiler, which has a sub-micrometer measurement resolution. A mathematical tool is based on the minimization of the error function to get the estimated aspherical surface equation from the scanned aspherical profile. Error minimization step uses the Nelder-Mead simplex (direct search) method. The result of the refractive power measurement is compared with the curvature distribution on the estimated aspherical surface equation

  • PDF

P.C 박스거더 교량의 최적설계 (Optimum Design of Prestressed Concrete Box Girder Bridges)

  • 방명석;김일곤
    • 전산구조공학
    • /
    • 제4권4호
    • /
    • pp.91-96
    • /
    • 1991
  • 캔틸레버공법으로 가설되는 P.C 박스거더 교량에 적용할 수 있는 최적설계 기법을 개발하였다. 최적설계문제는 제약조건이 없는 비선형문제이며 해석방법은 Nelder-Mead 방법을 사용하였다. 해석결과는 국내에 기 가설되어 있는 교량들의 설계값과 비교하였으며 만족할 만한 결과를 주었다. 개발된 프로그램은 등단면교량에만 적용이 가능하고 변단면 교량에서는 사용할 수 없다.

  • PDF

Optimal locations of point supports in laminated rectangular plates for maximum fundamental frequency

  • Wang, C.M.;Xiang, Y.;Kitipornchai, S.
    • Structural Engineering and Mechanics
    • /
    • 제5권6호
    • /
    • pp.691-703
    • /
    • 1997
  • This paper investigates the optimal locations of internal point supports in a symmetric crossply laminated rectangular plate for maximum fundamental frequency of vibration. The method used for solving this optimization problem involves the Rayleigh-Ritz method for the vibration analysis and the simplex method of Nelder and Mead for the iterative search of the optimum support locations. Being a continuum method, the Rayleigh-Ritz method allows easy handling of the changing point support locations during the optimization search. Rectangular plates of various boundary conditions, aspect ratios, composed of different numbers of layers, and with one, two and three internal point supports are analysed. The interesting results on the optimal locations of the point supports showed that (a) there are multiple solutions; (b) the locations are dependent on both the plate aspect ratios and the number of layers (c) the fundamental frequency may be raised significantly with appropriate positioning of the point supports.

단면 형상 측정을 이용한 비구면 안경 렌즈의 최적 근사화된 설계 계수의 추정 방법 (Estimation Method of the Best-Approximated Form Factor Using the Profile Measurement of the Aspherical Ophthalmic Lens)

  • 이호철
    • 한국정밀공학회지
    • /
    • 제22권5호
    • /
    • pp.55-62
    • /
    • 2005
  • This paper presents mainly a procedure to get the mathematical form of the manufactured aspherical lens. Generally Schulz formula describes the aspherical lens profile. Therefore, the base curvature, conic constant. and high-order polynomial coefficient should be set to get the approximated design equation. To find the best-approximated aspherical form, lens profile is measured by a commercial stylus profiler, which has a sub-micrometer measurement resolution. The optimization tool is based on the minimization of the root mean square of error sum to get the estimated aspherical surface equation from the scanned aspherical profile. Error minimization step uses the Nelder-Mead simplex (direct search) method. The result of the lens refractive power measurement shows the experimental consistency with the curvature distribution of the best-approximated aspherical surface equation

1,2-dichloropropane(l) - 2-methoxyethanoI(2)계의 과잉 몰 부피 및 과잉 몰 엔탈피의 측정 (Excess Molar Volumes and Enthalpies for 1,2-dichloropropane + 2-methoxyethanol at the Temperature 298.15K.)

  • 김문갑;이영세
    • 한국산업융합학회 논문집
    • /
    • 제4권2호
    • /
    • pp.193-198
    • /
    • 2001
  • 2성분계 혼합물(1,2-dichloropropane + 2-methoxyethanol)에 대해 과잉몰 부피(excess molar volumes) $V^E$ 및 과잉 몰엔탈피(excess molar enthalpies) $H^E$를 298.15K에서 측정하였다. 혼합물의 밀도측정은 digital vibrating tube densimeter를 이용하였고, 과잉 몰엔탈피는 isothermal flow microcalorimeter를 이용하였다. 측정한 과잉 몰부피는 전 조성 영역에서 양의 편차를 나타내었으며, 과잉 몰엔탈피는 S 자형용 보였다. 또한 얻어진 data는 Nelder- Mead의 simplex method를 이용하여 Redlich-Kister 다항식에 접합 (fitting)하였다.

  • PDF

An inverse determination method for strain rate and temperature dependent constitutive model of elastoplastic materials

  • Li, Xin;Zhang, Chao;Wu, Zhangming
    • Structural Engineering and Mechanics
    • /
    • 제80권5호
    • /
    • pp.539-551
    • /
    • 2021
  • With the continuous increase of computational capacity, more and more complex nonlinear elastoplastic constitutive models were developed to study the mechanical behavior of elastoplastic materials. These constitutive models generally contain a large amount of physical and phenomenological parameters, which often require a large amount of computational costs to determine. In this paper, an inverse parameter determination method is proposed to identify the constitutive parameters of elastoplastic materials, with the consideration of both strain rate effect and temperature effect. To carry out an efficient design, a hybrid optimization algorithm that combines the genetic algorithm and the Nelder-Mead simplex algorithm is proposed and developed. The proposed inverse method was employed to determine the parameters for an elasto-viscoplastic constitutive model and Johnson-cook model, which demonstrates the capability of this method in considering strain rate and temperature effect, simultaneously. This hybrid optimization algorithm shows a better accuracy and efficiency than using a single algorithm. Finally, the predictability analysis using partial experimental data is completed to further demonstrate the feasibility of the proposed method.

2성분계 {1,2-dichloropropane+2-(2-methoxyethoxy)ethanol 및 + 2-(2-ethoxyethoxy)ethanol}에 대한 298.15 K에서의 과잉몰엔탈피 및 과잉몰부피 (Excess Molar Enthalpies and Excess Molar Volumes for the Binary Mixtures {1,2-dichloropropane+2-(2-methoxyethoxy)ethanol, and +2-(2-ethoxyethoxy)ethanol} at 298.15 K)

  • 김재원;김문갑
    • Korean Chemical Engineering Research
    • /
    • 제44권5호
    • /
    • pp.444-452
    • /
    • 2006
  • 298.15 K 및 1 atm에서 2성분계 {1,2-dichloropropane+2-(2-methoxyethoxy)ethanol} 및 {1,2-dichloropropane+2-(2-ethoxyethoxy)ethanol}에 대한 과잉몰부피와 과잉몰엔탈피를 측정하였다. 과잉몰부피를 측정하기 위한 밀도는 vibrating glass-tube 방식의 densimeter를 이용하였고, 과잉몰엔탈피는 flow mixing 형의 isothermal microcalorimeter를 이용하였다. 측정한 과잉몰부피 및 과잉몰엔탈피는 조성과 상관지어 모두 S자형을 나타내었다. 초기 2-(2-alkoxyethoxy)ethanol 의 강한 자체 회합현상으로 음의 편차를 나타내며, 할로겐화탄화수소 분자의 증가에 따라 2-(2-alkoxyethoxy)ethanol 분자간의 수소결합을 끊기 위한 에너지가 상대적 더 많이 필요함을 보여주고 있다. 실험으로부터 얻어진 $V^E_m$$H^E_m$ data는 Nelder-Mead의 simplex pattern search method를 이용하여 Redlich-Kister 다항식에 접합(fitting)하였고, Wilson, NRTL 및 UNIQUAC model을 이용하여 $V^E_m$ data와 조성과의 상관관계를 조사하였다.

이중 대역 개구면 결합 공진기 급전 마이크로스트립 안테나 설계 (Dual Band Design of Aperture-Coupled Cavity-Fed Microstrip Antenna)

  • 장국현;남경민;이장환;남상호;김철언;김정필
    • 대한전자공학회논문지TC
    • /
    • 제44권3호
    • /
    • pp.26-32
    • /
    • 2007
  • 개구면 결합 공진기 급전 마이크로스트립 패치 안테나의 단순하고도 정확한 등가 회로를 추출한다. 이 등가회로는 이상적인 트랜스포머, 어드미턴스 소자, 그리고 전송선으로 구성되고 각 소자 값들은 가역 정리와 스펙트럼 영역 이미턴스 방법에 기반한 복소 전력 개념으로부터 구할 수 있다. 기 게재된 논문의 연구 결과를 이용하여 제안한 등가회로의 타당성을 검증한 후 이중 대역 안테나를 유전 알고리즘과 Holder-Mead 방법을 통한 이종 진화적 최적화 방법으로 설계하였다. 설계 목표치에 적합한 결과를 도출하였고, 이 결과는 이종 진화적 최적화 방법이 설계에 매우 효율직임을 확인해 준다.

Structural parameter estimation combining domain decomposition techniques with immune algorithm

  • Rao, A. Rama Mohan;Lakshmi, K.
    • Smart Structures and Systems
    • /
    • 제8권4호
    • /
    • pp.343-365
    • /
    • 2011
  • Structural system identification (SSI) is an inverse problem of difficult solution. Currently, difficulties lie in the development of algorithms which can cater to large size problems. In this paper, a parameter estimation technique based on evolutionary strategy is presented to overcome some of the difficulties encountered in using the traditional system identification methods in terms of convergence. In this paper, a non-traditional form of system identification technique employing evolutionary algorithms is proposed. In order to improve the convergence characteristics, it is proposed to employ immune algorithms which are proved to be built with superior diversification mechanism than the conventional evolutionary algorithms and are being used for several practical complex optimisation problems. In order to reduce the number of design variables, domain decomposition methods are used, where the identification process of the entire structure is carried out in multiple stages rather than in single step. The domain decomposition based methods also help in limiting the number of sensors to be employed during dynamic testing of the structure to be identified, as the process of system identification is carried out in multiple stages. A fifteen storey framed structure, truss bridge and 40 m tall microwave tower are considered as a numerical examples to demonstrate the effectiveness of the domain decomposition based structural system identification technique using immune algorithm.

FE model updating based on hybrid genetic algorithm and its verification on numerical bridge model

  • Jung, Dae-Sung;Kim, Chul-Young
    • Structural Engineering and Mechanics
    • /
    • 제32권5호
    • /
    • pp.667-683
    • /
    • 2009
  • FE model-based dynamic analysis has been widely used to predict the dynamic characteristics of civil structures. In a physical point of view, an FE model is unavoidably different from the actual structure as being formulated based on extremely idealized engineering drawings and design data. The conventional model updating methods such as direct method and sensitivity-based parameter estimation are not flexible for model updating of complex and large structures. Thus, it is needed to develop a model updating method applicable to complex structures without restriction. The main objective of this paper is to present the model updating method based on the hybrid genetic algorithm (HGA) by combining the genetic algorithm as global optimization method and modified Nelder-Mead's Simplex method as local optimization method. This FE model updating method using HGA does not need the derivation of derivative function related to parameters and without application of complicated inverse analysis methods. In order to allow its application on diversified and complex structures, a commercial FEA tool is adopted to exploit previously developed element library and analysis algorithms. Moreover, an output-level objective function making use of measurement and analytical results is also presented to update simultaneously the stiffness and mass of the analysis model. The numerical examples demonstrated that the proposed method based on HGA is effective for the updating of the FE model of bridge structures.