• 제목/요약/키워드: Negative power

검색결과 1,631건 처리시간 0.028초

Numerical Simulation of the Characteristics of Electrons in Bar-plate DC Negative Corona Discharge Based on a Plasma Chemical Model

  • Liu, Kang-Lin;Liao, Rui-Jin;Zhao, Xue-Tong
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1804-1814
    • /
    • 2015
  • In order to explore the characteristics of electrons in DC negative corona discharge, an improved plasma chemical model is presented for the simulation of bar-plate DC corona discharge in dry air. The model is based on plasma hydrodynamics and chemical models in which 12 species are considered. In addition, the photoionization and secondary electron emission effect are also incorporated within the model as well. Based on this model, electron mean energy distribution (EMED), electron density distribution (EDD), generation and dissipation rates of electron at 6 typical time points during a pulse are discussed emphatically. The obtained results show that, the maximum of electron mean energy (EME) appears in field ionization layer which moves towards the anode as time progresses, and its value decreases gradually. Within a pulse process, the electron density (ED) in cathode sheath almost keeps 0, and the maximum of ED appears in the outer layer of the cathode sheath. Among all reactions, R1 and R2 are regarded as the main process of electron proliferation, and R22 plays a dominant role in the dissipation process of electron. The obtained results will provide valuable insights to the physical mechanism of negative corona discharge in air.

Performance evaluation of the Floating Absorber for Safety at Transient (FAST) in the innovative Sodium-cooled Fast Reactor (iSFR) under a single control rod withdrawal accident

  • Lee, Seongmin;Jeong, Yong Hoon
    • Nuclear Engineering and Technology
    • /
    • 제52권6호
    • /
    • pp.1110-1119
    • /
    • 2020
  • The Floating Absorber for Safety at Transient (FAST) is a safety device used in the innovative Sodium-cooled Fast Reactor (iSFR). The FAST insert negative reactivity under transient or accident conditions. However, behavior of the FAST is still unclear under transient conditions. Therefore, the existing Floating Absorber for Safety at Transient Analysis Code (FASTAC) is improved to analyze the FAST movement by considering the reactivity and temperature distribution within the reactor core. The current FAST system is simulated under a single control rod withdrawal accident condition. In this investigation, the reactor thermal power does not return to its initial thermal power even if the FAST inserts negative reactivity. Only a 9 K of coolant temperature margin, in the hottest fuel assembly at EOL, can lead to unnecessary insertion of the negative reactivity. On the other hand, the FASTs cannot contribute to controlling the reactivity when normalized radial power is less than 0.889 at BOL and 0.972 at EOL. These simulation results suggest that the current FAST design needs to be optimized depending on its installed location. Meanwhile, the FAST system keeps the fuel, cladding and coolant temperatures below their limit temperatures with given conditions.

불평형부하를 가지는 다단 H-bridge STATCOM에서 상간 직류전압 불평형의 제어 (Control of DC-side Voltage Unbalance among Phases in Multi-level H-Bridge STATCOM with Unbalanced Load)

  • 권병기;정승기;김태형
    • 전력전자학회논문지
    • /
    • 제19권4호
    • /
    • pp.332-341
    • /
    • 2014
  • A cascaded H-bridge multi-level STATCOM(STATic synchronous COMpensator), which is composed of many cell inverters with independent dc-sources, generates inevitably dc-side voltage unbalance among phases when it compensates unbalanced load. It comes from the difference of flowing active power in each phase when this compensator makes negative-sequence current to eliminate the unbalance of source-side current. However, this unbalance can be controlled by injecting zero-sequence current which is decoupled with grid currents, so the compensator can work well during this balancing process. Both a feedback control algorithm, which produces zero-sequence current proportional to dc-side voltage unbalance within each phase, and a feedforward control algorithm, which makes zero-sequence current directly from the compensator's negative-sequence current, were proposed. The dc-side voltage of each phase can be controlled stably by these proposed algorithms in both steady-state and transient, so the compensator can have fast response to satisfy control performance under rapid changing load. These balancing controllers were implemented and verified via simulation and experiment.

The Negative Impact Study on the Information of the Large Discount Retailers

  • Kim, Jong-Jin
    • 유통과학연구
    • /
    • 제13권7호
    • /
    • pp.33-40
    • /
    • 2015
  • Purpose - This study aims to find out what impacts large retailers' behaviors appearing when they promote the strengthening of their market dominating power in the trade relations with small and medium suppliers or in the market can have on consumers. Research design, data, methodology - This study analyzed negative information (news) on large retailers (Lotte Mart, E-Mart and Homeplus) based on the monthly data over the past five years from 2008 to 2012 and also analyzed the correlation between dependent variables that are likely to affect sales through large retailer economic index, Results - This study conducted a correlation analysis on the time lag of the factors that have an impact on the negative information and sales of large retailers in order to analyze how consumers respond to the choice of large retailers' store (store sales) when they perceived negative information about the un- ethical behaviors of large retailers. Conclusions - Unfair and negative information on large retailers appeared significant for the hypothesis that sales will be affected by the image of large retailers and change of consumer attitudes.

A Simple Negative Torque Compensation Scheme for a High Speed Switched Reluctance Motor

  • Lee, Dong-Hee;Ahn, So-Yeon;Ahn, Jin-Woo
    • Journal of Power Electronics
    • /
    • 제12권1호
    • /
    • pp.58-66
    • /
    • 2012
  • SRMs(Switched Reluctance Motors) are much interested in high speed applications due to the mechanical robustness, simple structure and high efficiency. In spite of many advantages of SRMs, a higher torque ripple discourages the adoption of SRMs in a high speed application. This paper presents a simple negative torque of tail current compensation scheme using a modified TSF(Torque Sharing Function) for the high speed SRMs. Because of the short commutation in the high speed region, the negative torque from the tail current makes the high torque ripple. In order to reduce and compensate the negative torque from tail current, the proposed control scheme produces an additional compensating torque with a reference torque in the active phase winding. And the compensating value is dependent on the tail current of the inactive phase winding. Furthermore, the switching signals of the outgoing phase are fully turned off to restrict the extended tail current, and the torque error of the outgoing phase is compensated by the incoming phase. The proposed modified TSF control scheme is verified by the computer simulations with 30,000[rpm] high speed 4/2 SRM. The simulation and experimental results show the effectiveness of the proposed control scheme.

Power output and efficiency of a negative capacitance and inductance shunt for structural vibration control under broadband excitation

  • Qureshi, Ehtesham Mustafa;Shen, Xing;Chang, Lulu
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권2호
    • /
    • pp.223-246
    • /
    • 2015
  • Structural vibration control using a piezoelectric shunt is an established control technique. This technique involves connecting a piezoelectric patch, which is bonded onto or embedded into the vibrating structure, to an electric shunt circuit. Thus, vibration energy is converted into electrical energy and is dissipated through a network of electrical components. Different configurations of shunt have been researched, among which the negative capacitance-inductance shunt has gained prominence recently. It is basically an analog, active circuit consisting of operational amplifiers and passive elements to introduce real and imaginary impedance on the vibrating structure. The present study attempts to model the behavior of a negative capacitance-inductance shunt in terms of power output and efficiency using circuit modeling software. The shunt model is validated experimentally and is used to control the structural vibration of an aluminum beam, connected to a pair of piezoelectric patches, under broadband excitation. The model is also used to determine the optimal parameters of a negative capacitance-inductance shunt to increase the efficiency and predict the voltage output limit of op-amp against the supply voltage.

The effects of blade-pitch control on the performance of semi-submersible-type floating offshore wind turbines

  • Kim, H.C.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • 제8권1호
    • /
    • pp.79-99
    • /
    • 2018
  • The effects of BPC (blade pitch control) on FOWT (floating offshore wind turbine) motions and generated power are investigated by using a fully-coupled turbine-floater-mooring simulation program. In this regard, two example FOWTs, OC4-5MW semi-submersible FOWT and KRISO four-3MW-units FOWT, are selected since the numerical simulations of those two FOWTs have been verified against experiments in authors' previous studies. Various simulations are performed changing BPC natural frequency (BPCNF), BPC damping ratio (BPCDR), and wind speeds. Through the numerical simulations, it was demonstrated that negative damping can happen for platform pitch motions and its influences are affected by BPCNF, BPCDR, and wind speeds. If BPCNF is significantly larger than platform-pitch natural frequency, the pitch resonance can be very serious due to the BPC-induced negative-damping effects, which should be avoided in the FOWT design. If wind speed is significantly higher than the rated wind velocity, the negative damping effects start to become reduced. Other important findings are also given through systematic sensitivity investigations.

Performance of Passive Boost Switched Reluctance Converter for Single-phase Switched Reluctance Motor

  • Ahn, Jin-Woo;Lee, Dong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권4호
    • /
    • pp.505-512
    • /
    • 2011
  • A novel passive boost power converter forsingle-phaseswitched reluctance motor is presented. A simple passive circuit is proposed comprisingthree diodes and one capacitor. The passive circuitis added in the front-end of a conventional asymmetric converter to obtain high negative bias. Based on this passive network, the terminal voltage of the converter side is a general DC-link voltage level in parallel mode up to a double DC-link voltage level in series mode. Thus,it can suppress the negative torque generation from the tail current and improve the output power. The results of the comparative simulation and experiments forthe conventional and proposed converter verify the performance of the proposed converter.

MISCLASSIFICATION IN SIZE-BIASED MODIFIED POWER SERIES DISTRIBUTION AND ITS APPLICATIONS

  • Hassan, Anwar;Ahmad, Peer Bilal
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제13권1호
    • /
    • pp.55-72
    • /
    • 2009
  • A misclassified size-biased modified power series distribution (MSBMPSD) where some of the observations corresponding to x = c + 1 are misclassified as x = c with probability $\alpha$, is defined. We obtain its recurrence relations among the raw moments, the central moments and the factorial moments. Discussion of the effect of the misclassification on the variance is considered. To illustrate the situation under consideration some of its particular cases like the size-biased generalized negative binomial (SBGNB), the size-biased generalized Poisson (SBGP) and sizebiased Borel distributions are included. Finally, an example is presented for the size-biased generalized Poisson distribution to illustrate the results.

  • PDF

전기 집진기에서의 Submicron 입자의 집진 특성에 관한 연구-II. 집진 효율 특성 (A Study on the Collection Characteristics of Submicron Particles in an Electrostatic Precipitator - II. Collection Efficiency Characteristics)

  • 김용진;여석준;유주식
    • 설비공학논문집
    • /
    • 제13권7호
    • /
    • pp.579-587
    • /
    • 2001
  • This study investigates particle collection characteristics of a cylindrical electrostatic precipitator. Experimental work has been made for the submicron particles. The effects of polarity of discharge electrode wire, particle diameter, gas velocity, gas temperature, and specific corona power on the particle collection efficiency are investigated. The efficiency of negative corona is higher than that of positive corona. as the particle diameter increases, the efficiency is decreased when the diameter is in the range of 0.02-0.6 micron, but is increased for the nanometer particles with diameter smaller than 0.02 micron. The efficiency is increased with increase of specific corona power. As the gas temperature increases, overall collection efficiency is increased for a negative corona, but is deceased for a positive corona.

  • PDF