본 연구에서는 방사선치료용 선형가속기의 갠트리 회전에 따른 온-보드 영상장치(on-board imager, OBI)의 회전중심점의 위치 정확도 확인을 위해 제조사에서 제공된 고객인수시험절차서(customer accetpance procedure, CAP)상에서 명시된 방법을 비롯하여 OBI 선원 위치 $0^{\circ},\;90^{\circ},\;180^{\circ},\;270^{\circ}$에서 획득된 영상, 갠트리 각도 $10^{\circ}$ 간격으로 촬영된 영상, 콘빔 CT 재구성을 위한 미처리 투사영상 등에 디지털 영상처리 기법을 적용하여 자동으로 오차를 계산하는 새로 제안된 세 가지의 방법들을 각기 적용하여 그 오차를 평가하고 각 방법의 효용성에 대하여 검증하였다. 갠트리 회전에 따른 OBI 회전중심점의 오차 변화 양상 확인을 위해서는 $10^{\circ}$ 간격으로 영상 촬영 후 5차 다항식을 이용하여 조정함수(fitted function)를 구하는 방법이 적절하지만 정도관리 목적으로 최대 오차만을 구하고자 할 경우에는 $0^{\circ},\;90^{\circ},\;180^{\circ},\;270^{\circ}$ 등 네 방향에서 촬영된 영상을 이용하여 계산하는 것으로도 충분하였다. 각 방법을 적용하여 오차를 구한 결과 OBI 선원의 위치가 $90^{\circ}$부터 $180^{\circ}$ 사이일 경우 가장 크게 나타났으며 최대값은 0.44 mm였다. 또한 기간에 따른 OBI 회전중심점의 변화 양상은 최대 0.6 mm 이내로 안정적으로 유지되고 있음을 확인하였다. 본 연구에서 제안된 방법이 주기적인 정도관리에 적용된다면 간단하면서도 비교적 정확하게 평가를 수행할 수 있을 것으로 기대된다.
클라우드 컴퓨팅은 서비스 사용자 요구에 따라 컴퓨팅 자원을 임대하여 사용하는 컴퓨팅 패러다임이다. 클라우드 컴퓨팅에서 컴퓨팅 자원은 사용자의 서비스 수요에 따라 컴퓨팅 자원을 확장 또는 축소가 가능하여 전체 서비스 비용 절감 효과를 가질 수 있다. 그리고, M&S (Modeling and Simulation) 기술은 컴퓨팅 자원과 CAE 소프트웨어를 통해 엔지니어링 분석 작업 결과를 얻어, 실제 실험 결과가 없이 제품의 상태를 시뮬레이션을 수행하여 분석하는 방법이다. M&S 기술은 FEA(Finite Element Analysis), CFD(Computational Fluid Dynamics), MBD(Multibody Dynamics) 및 최적화 분야에서 활용된다. M&S 통한 작업 절차는 전처리, 해석, 후처리 단계로 구분된다. CAE 소트프웨어를 통한 3D 모델링 작업인 전/후처리는 GPU 연산이 집약적이며, 3D 모델 해석은 CPU 또는 GPU 연산이 요구된다. 일반적인 개인 데스크톱에서 복잡한 3D 모델을 해석하는 시간이 많이 소요된다. 결과적으로, M&S를 원활하게 수행하기 위해서는 고성능 컴퓨팅 자원이 요구된다. 이 문제를 해결하기 위해 우리는 통합 클라우드 및 클러스터 컴퓨팅 환경인 HEMOS-Cloud 서비스를 제안한다. 제안한 클라우드 기반 방식에서는 M&S에 필요한 전/후처리 및 솔버 작업을 원활하게 수행할 수 있도록 구성했다. 이 시스템에서 전/후처리는 VDI(Virtual Desktop Infrastructure)에서 수행되고 해석은 클러스터 환경에서 수행된다. 각 용도에 맞게 서로 다른 환경에서 분리하여 컴퓨팅 자원 간에 간섭을 최소화했다. HEMOS-Cloud 서비스는 기업 또는 학교에서 M&S의 경험이 필요로 하는 사용자에게 CAE 소프트웨어와 컴퓨팅 자원을 제공한다. 본 논문에서는 HEMOS-Cloud 서비스의 경제적 파급효과를 산업연관분석을 활용하여 분석했다. 전문가의 의견을 반영하여 조정된 계수를 통한 분석 결과는 생산유발효과 74억원, 부가가치유발효과 41억원, 취업자유발효과 10억원당 50명으로 분석되었다.
Brain PET/CT 검사는 뇌의 정신활동 뿐만 아니라 혈액의 관류상태, 에너지원의 대사상태, 생리적 활성물질의 섭취 정도를 관찰할 수 있으며 이를 통계적으로 분석하기 위한 다양한 데이터 비교 방법들이 적용되고 있다. 본 논문에서는 다양한 데이터 비교 방법들 중 SPM과 scenium의 유용성을 비교 평가 하였다. 2014년 3월부터 7월까지 서울대학교병원에서 18F-FDG PET/CT 검사를 시행 받은 15명(평균연령 $62.02{\pm}15.03$세, abnormal 10명, normal 5명)의 데이터를 분석하였다. 사용된 장비는 Siemens사의 Biograph Truepoint40 with TrueV이며 데이터 분석을 위하여 SPM99, syngo.via version VA30A, scenium version 4.0이 사용되었다. 검사는 $^{18}F-FDG$를 kg당 3.7MBq 주사하여 30분 후 brain emission 영상을 10분 획득하였다. 획득된 영상을 이용하여 영상 판독과 SPM, scenium 결과의 일치성을 5명의 핵의학과 판독의가 평가하였다. Scenium에서 parameter 변경에 따른 SUV와 SD 변화를 평가하기 위하여 환자 data 재구성시 iteration 4, 6, 8, gaussian filter 2mm, 4mm, 8mm, matrix size 168, 256, 336의 변화를 주어 재구성후 증감을 평가하였다. 마지막으로 3명의 방사선사가 두 software를 이용하여 평균 결과 분석 시간을 평가하였다. 영상 판독과 SPM 결과의 일치성은 normal 89.5%, abnormal 73.2%로 normal 환자에서 보다 높은 일치성을 보였으며 total 84.1%의 일치하는 것으로 나타났다. Scenium에서는 normal 92.1%, abnormal 93.0% 그리고 total 92.4%로 나타났다. Scenium에서 parameter 변경에 따른 SUV와 SD 변화 평가에서 iteration 횟수와 matrix size가 감소할수록 SUV와 SD 값은 iteration 변화에서 최대 0.59%, 8.73% 그리고 matrix size 변화에서 최대 0.88%, 8.25% 감소하였다. Gaussian filter변화에서는 FWHM이 증가할수록 SUV와 SD값은 최대 4.69%, 20.38% 감소하였다. 두 software를 이용한 평균 결과 분석 시간은 SPM 282초, scenium 116초로 scenium으로 결과 분석 시 SPM 사용 시 보다 58.% 시간이 감소되었다. 데이터 비교 평가 software들의 장단점을 충분히 이해하고 각 병원의 장비 환경과 실정에 맞는 software를 적용한다면 brain PET/CT 검사 시 보다 많은 정보를 제공할 수 있을 것으로 사료된다.
지식베이스를 구축하는 작업은 도메인 전문가가 온톨로지 스키마를 이해한 뒤, 직접 지식을 정제하는 수작업이 요구되는 만큼 비용이 많이 드는 활동이다. 이에, 도메인 전문가 없이 다양한 웹 환경으로부터 질의에 대한 답변 정보를 추출하기 위한 자동화된 시스템의 연구개발의 필요성이 제기되고 있다. 기존의 정보 추출 관련 연구들은 웹에 존재하는 다양한 형태의 문서 중 학습데이터와 상이한 형태의 문서에서는 정보를 효과적으로 추출하기 어렵다는 한계점이 존재한다. 또한, 기계 독해와 관련된 연구들은 문서에 정답이 있는 경우를 가정하고 질의에 대한 답변정보를 추출하는 경우로서, 문서의 정답포함 여부를 보장할 수 없는 실제 웹의 비정형 문서로부터의 정보추출에서는 낮은 성능을 보인다는 한계점이 존재한다. 본 연구에서는 지식베이스 확장을 위하여 웹에 존재하는 멀티소스 비정형 문서로부터 질의에 대한 정보를 추출하기 위한 시스템의 개발 방법론을 제안하고자 한다. 본 연구에서 제안한 방법론은 "주어(Subject)-서술어(Predicate)"로 구분된 질의에 대하여 위키피디아, 네이버 백과사전, 네이버 뉴스 3개 웹 소스로부터 수집된 비정형 문서로부터 관련 정보를 추출하며, 제안된 방법론을 적용한 시스템의 성능평가를 위하여, Wu and Weld(2007)의 모델을 베이스라인 모델로 선정하여 성능을 비교분석 하였다. 연구결과 제안된 모델이 베이스라인 모델에 비해, 위키피디아, 네이버 백과사전, 네이버 뉴스 등 다양한 형태의 문서에서 정보를 효과적으로 추출하는 강건한 모델임을 입증하였다. 본 연구의 결과는 현업 지식베이스 관리자에게 지식베이스 확장을 위한 웹에서 질의에 대한 답변정보를 추출하기 위한 시스템 개발의 지침서로서 실무적인 시사점을 제공함과 동시에, 추후 다양한 형태의 질의응답 시스템 및 정보추출 연구로의 확장에 기여할 수 있을 것으로 기대한다.
현재 우리는 소셜 네트워크 서비스(Social Network Service, 이하 SNS) 상에서 수많은 데이터를 만들어 내고 있다. 특히, 모바일 기기와 SNS의 결합은 과거와는 비교할 수 없는 대량의 데이터를 생성하면서 사회적으로도 큰 영향을 미치고 있다. 이렇게 방대한 SNS 데이터 안에서 사람들이 많이 이야기하는 이슈를 찾아낼 수 있다면 이 정보는 사회 전반에 걸쳐 새로운 가치 창출을 위한 중요한 원천으로 활용될 수 있다. 본 연구는 이러한 SNS 빅데이터 분석에 대한 요구에 부응하기 위해, 트위터 데이터를 활용하여 트위터 상에서 어떤 이슈가 있었는지 추출하고 이를 웹 상에서 시각화 하는 트위터이슈 트래킹 시스템 TITS(Twitter Issue Tracking System)를 설계하고 구축 하였다. TITS는 1) 일별 순위에 따른 토픽 키워드 집합 제공 2) 토픽의 한달 간 일별 시계열 그래프 시각화 3) 토픽으로서의 중요도를 점수와 빈도수에 따라 Treemap으로 제공 4) 키워드 검색을 통한 키워드의 한달 간 일별 시계열 그래프 시각화의 기능을 갖는다. 본 연구는 SNS 상에서 실시간으로 발생하는 빅데이터를 Open Source인 Hadoop과 MongoDB를 활용하여 분석하였고, 이는 빅데이터의 실시간 처리가 점점 중요해지고 있는 현재 매우 주요한 방법론을 제시한다. 둘째, 문헌정보학 분야뿐만 아니라 다양한 연구 영역에서 사용하고 있는 토픽 모델링 기법을 실제 트위터 데이터에 적용하여 스토리텔링과 시계열 분석 측면에서 유용성을 확인할 수 있었다. 셋째, 연구 실험을 바탕으로 시각화와 웹 시스템 구축을 통해 실제 사용 가능한 시스템으로 구현하였다. 이를 통해 소셜미디어에서 생성되는 사회적 트렌드를 마이닝하여 데이터 분석을 통한 의미 있는 정보를 제공하는 실제적인 방법을 제시할 수 있었다는 점에서 주요한 의의를 갖는다. 본 연구는 JSON(JavaScript Object Notation) 파일 포맷의 1억 5천만개 가량의 2013년 3월 한국어 트위터 데이터를 실험 대상으로 한다.
본 연구는 서비스 시장에서의 지각된 품질과 개인가치간의 인과적 관계 및 고객의 인지욕구에 따른 온 오프라인상의 조절효과에 대해 실증분석하였으며 이를 통해 개인가치에 대한 서비스 전략과 마케팅 관리의 중요성을 제시하고 있다. 서비스 시장에서 서비스 제공자와 구매자간의 장기적 거래관계의 중요성이 크게 부각됨에 따라 관계구축 및 강화에 매우 중요한 역할을 하는 개인가치에 관한 연구는 학계뿐만 아니라 실무적으로도 고객관계관리의 관점에서 시사하는 바가 크다고 할 수 있다. 실증분석을 위해 대형마트(할인점)와 인터넷 쇼핑몰을 이용하는 고객을 대상으로 설문을 통해 데이터를 수집하였으며 온 오프라인의 비교분석을 통한 차이검증을 위한 인과적 구성모델에 대해 구조방정식 모델분석을 통해 가설검증하였다. 구성모델에 대한 분석결과 물리적 환경, 상호작용 품질, 그리고 결과품질로 구성된 지각된 품질은 안정적 삶, 사회적 인식, 사회적 통합으로 구성된 서비스 개인가치에 통계적으로 매우 유의한 정(+)의 영향을 미치는 것으로 나타났으며 집단간 차이효과분석을 통해서도 온 오프라인에 따른 조정효과는 온라인에서보다는 오프라인에서 더 유의한 것으로 나타났다. 그리고 온라인상에서의 서비스에 대한 인지욕구가 높을 때보다는 오프라인상에서의 서비스에 대한 인지욕구가 높을 때 개인가치에 더 유의한 영향을 미치는 것으로 나타났다. 마지막으로 본 연구의 구성모델에 대한 적합도 역시 수용할만한 수준인 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.