최근 LBS(location-based service) 및 텔레매틱스(telematics) 응용의 효율적인 지원을 위해, 유클리디언(Euclidean) 공간을 대신하여 실제 도로나 철도와 같은 공간 네트워크(network)를 고려한 연구가 활발하게 수행중이다. 그러나 기존 연구에서의 범위 질의 및 k-최근접 질의 처리 알고리즘은 범위나 k 값의 증가에 따라 검색에 필요한 노드 검색 및 거리 계산의 비용 증가로 인하여 선형적인 성능 감소를 보인다. 따라서, 본 논문에서는 공간 네트워크를 위한 기존 질의처리 알고리즘의 성능을 향상시키기 위해, 실체화 기법을 이용한 효율적인 범위 및 k-최근접 질의처리 알고리즘을 제안한다. 아울러, 기존 알고리즘과의 성능 비교를 통하여 제안하는 알고리즘이 우수함을 보인다.
최근에 데이터베이스 응용분야에서 내용기반의 검색이 가능한 이미지 데이터와 같은 다차원 정보 처리에 대한 관심이 고조되고 있다. 따라서 다차원 데이터를 효율적으로 저장하고. 사용자가 원하는 질의 결과를 신속히 제공하는 것이 중요한 연구분야이다 다차원의 데이터에 대한 질의는 대표적으로 영역질의 (Range query)와 최근접객체검색질의(Nearest Neighbor Query)로 나눌 수 있다. 본 논문에서는 $R^*-tree$와 같은 다차원의 인덱싱 구조에서 효율적이고 빠른 k-근접객체검색질의를 수행하기 위한 방안을 제시한다. k-근접객체검색질의는 질의 객체로부터 가장 근접한 k개의 객체를 반환하는 것이다. 본 논문은 이를 위하여 가지치기(Pruning) 기법을 이용하여 검색 공간을 줄이는 방법을 사용하였다. 실험을 통하여 제안된 전략의 오버헤드와 이득을 보였으며, 마지막으로 가장 효율적인 전략의 사용을 제안하였다.
본 연구에서는 국내 초고층 건물 사례들을 바탕으로 사례 데이터베이스를 구축하여 구조시스템 대안 생성 및 선정 업무를 효율적으로 처리 할 수 있는 설계지원시스템을 개발하였으며, 사례 데이터베이스의 정보를 이용한 사례기반추론기법을 제안하였다. 국내 47개 초고층 건물에 대한 사례 데이터베이스의 설계정보를 분석하여 초기설계 단계에서 구조시스템 선정을 위한 귀납적 조회 모듈 및 유사사례선정을 위한 최근린 조회기법도 제시하였다.
최근 GPS 및 무선 이동 컴퓨팅 기술의 발달로 인해, 텔레매틱스(telematics) 및 위치기반 서비스(LBS) 응용이 활발하게 연구되고 있다. 이러한 위치 기반 서비스 응용에서는 이동객체의 위치 정보가 시간의 흐름에 따라 계속적으로 변하기 때문에, 이를 위한 빈번한 업데이트 연산은 시스템에 많은 부하를 가중시키며 이로 인해 검색 성능의 저하를 초래한다. 이를 해결하기 위해 공간 네트워크에서 대용량 이동객체의 위치정보를 분산 처리하기 위한 DS-GRID(distributed S-GRID) 및 이를 위한 k-최근접 질의처리 알 고리즘이 제안되었다[1]. 그러나 k-최근접 질의처리 기법은 질의점 및 이동객체의 위치가 변경되면 그 결과 가 유효하지 않기 때문에, 연속 k-최근접(CKNN:continuous k-nearest neighbor) 질의처리 알고리즘의 연구가 필요하다. 본 연구에서는 DS-GRID를 위한 MCE-CKNN 알고리즘 및 MBP-CKNN 알고리즘을 제안한다. MCE-CKNN 알고리즘은 주어진 경로를 셀 단위로 분할하여 각 셀에서 질의 처리를 병렬적으로 수행하여 검색 성능을 향상시킨다. 아울러 MBP-CKNN 알고리즘은 그리드 셀의 각 경계점에서 가까운 POI를 미리 저장하여 인접셀 탐색 횟수를 줄임으로써 검색 성능을 향상시킨다. 마지막으로, 제안하는 알고리즘의 성능 분석을 통해, 기존 알고리즘보다 15-53% 검색 성능이 우수함을 나타내었다.
k-인접 이웃 그래프는 모든 정점에 대한 k-NN 정보를 나타내는 데이터 구조로서, 많은 정보검색 및 추천 시스템에서 k-인접 이웃 그래프를 활용하고 있다. 현재까지 k-인접 이웃 그래프를 생성하는 다양한 방법들이 제안되었지만, 다음의 두 조건을 동시에 만족하는 알고리즘은 제안되지 못했다: (1) 특정유사도 척도를 가정하지 않는다. (2) 정점 또는 차원의 수가 증가하더라도 정확도가 감소하지 않는다. 본 논문에서는 balanced canopy clustering을 이용하여 위 두 조건을 모두 만족하는 k-NN 그래프 생성 알고리즘을 제안한다. 실험 결과, 정점과 차원의 수에 상관없이 기본 알고리즘에 비해 5배 이상 빠르면서 약 92%의 정확도를 유지했다. 본 알고리즘은 새로운 유사도 척도를 사용하거나, 높은 정확도를 보장해야 할 경우 효과적으로 사용될 수 있다.
감정요소를 사용한 정보검색시스템은 감정에 기반한 정보검색을 수행하기 위하여 감정시소러스를 구성하였으며 이를 사용한 감정요소추출기를 구현하였다. 감정요소추출기는 기본 5가지 감정 요소를 해당 문서에서 추출하여 문서를 벡터화시킨다. 벡터화시킨 문서들은 k-nearest neighbor, 단순 베이지안 및 상관계수기법을 사용한 2단계 투표방식을 통해 학습하고 분류하였다. 실험결과 분류 방식과 K-means를 이용한 클러스터링에서 감정요소에 기반한 방식이 더 우수하다는 결과와 5,000 단어 미만의 문서 검색에 감정기반 검색이 유리하다는 것을 보였다.
Feature-based similarity retrieval become an important research issue in image database systems. The features of image data are useful to discrimination of images. In this paper, we propose the highspeed k-Nearest Neighbor search algorithm based on Self-Organizing Maps. Self-Organizing Maps (SOM) provides a mapping from high dimensional feature vectors onto a two-dimensional space. The mapping preserves the topology of the feature vectors. The map is called topological feature map. A topological feature map preserves the mutual relations (similarity) in feature spaces of input data. and clusters mutually similar feature vectors in a neighboring nodes. Each node of the topological feature map holds a node vector and similar images that is closest to each node vector. In topological feature map, there are empty nodes in which no image is classified. We experiment on the performance of our algorithm using color feature vectors extracted from images. Promising results have been obtained in experiments.
특징정보를 기반으로 한 유사화상 검색은 화상 데이터베이스에 있어서 중요한 과제의 하나이다. 화상 데이터의 특징정보를 각 화상을 식별하는데 유용한 정보이다. 본 논문에서는 자기조직화 맵기반의 고속 k-NN 탐색 알고리즘을 제안한다. 자기조직화 맵은 학습을 통하여 고차원 특징벡터를 2차원 공간에 맵핑함으로서 위상 특징맵을 생성한다. 위상 특징맵은 입력 데이터의 특징공간의 상호간의 유사성을 가지고 있으며, 각 노드는 노드벡터와 각 노드벡터에 가장 가까운 유사화상이 분류된다. 이러한 자기조직화 맴에 의한 유사화상 분류결과에 대한 k-NN 탐색을 구현하기 위한여, (1) 위상특징 맵에 대한 접근방법, (2) 고속탐색을 위한 pruning strategy의 적용을 실현하였다. 본 연구에서는 실험을 통하여 실제화상으로부터 추출한 색상 특징을 사용하여 제안한 알고리즘의 성능을 평가함으로써 유사화상 검색에 유효한 결과를 얻을 수 있었다.
특징정보를 기반으로 한 유사 이미지 검색은 이미지 데이타베이스에 있어서 중요한 과제의 하나이다. 이미지 데이타의 특징정보는 각 이미지를 식별하는데 유용한 정보이다. 본 논문에서는 자기 조직화 맵 기반의 고속 k-NN 탐색 알고리즘을 제안한다. 자기 조직화 맵은 고차원 특징벡터를 2차원 공간에 맵핑하여 위상특징 맵을 생성한다. 위상특징 맵은 입력 데이타의 특징공간과 상호관계(유사성)를 가지고 있으며, 인접노드에 서로 유사한 특징벡터가 클러스터링된다. 그러므로 위상특징 맵상의 각 노드에는 노드 벡터와 각 노드벡터에 가장 가까운 유사 이미지가 분류된다. 이러한 자기 조직화 맵에 의한 유사 이미지 분류결과에 대하여 k-NV 탐색을 구현하기 위하여, (1) 위상특징 맵에 대한 접근방법, (2) 고속탐색을 위한 pruning strategy의 적용을 실현하였다. 본 연구에서는 실험을 통하여 실제 이미지로부터 추출한 색상 특징을 사용하여 제안한 알고리즘의 성능을 평가함으로써 유사 이미지 검색에 유효한 견과를 얻을 수 있었다.
최근 모바일 기기 및 무선 통신의 발달로 인하여 다양한 위치 기반 서비스에 대한 연구가 증대되고 있으며, 이러한 위치 기반 서비스의 대표적 질의인 k-최근접 질의를 효율적으로 처리하기 위한 연구가 활발히 수행되어 왔다. 기존 연구들은 질의 처리 성능의 향상을 위해, 공간 네트워크 상의 POI와 노드 사이의 거리를 미리 계산하는 pre-computation 기법을 사용한다. 그러나 이러한 pre-computation 기법들은 검색 대상이 되는 POI의 변경을 효과적으로 처리하지 못하는 단점을 갖는다. 본 논문에서는 기존 pre-computation 기법들의 단점을 극복하고, 대용량 이동객체의 위치정보를 효율적으로 관리하기 위하여 S-GRID를 이용한 분산 그리드 기법을 제안한다. 아울러 제안하는 분산 그리드 기법을 위한 k-최근접 질의 처리 알고리즘을 제시한다. 마지막으로, S-GRID 및 분산 그리드 기법의 k-최근접 질의처리 알고리즘의 성능 평가를 통해, 제안하는 기법의 우수성을 입증한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.