For many years, researchers in face description area have been representing and recognizing faces based on different methods that include subspace discriminant analysis, statistical learning and non-statistics based approach etc. But still automatic face recognition remains an interesting but challenging problem. This paper presents a novel and efficient face image representation method based on Optimized Local Ternary Pattern (OLTP) texture features. The face image is divided into several regions from which the OLTP texture feature distributions are extracted and concatenated into a feature vector that can act as face descriptor. The recognition is performed using nearest neighbor classification method with Chi-square distance as a similarity measure. Extensive experimental results on Yale B, ORL and AR face databases show that OLTP consistently performs much better than other well recognized texture models for face recognition.
Process control is essential to operate the semiconductor process efficiently. This paper consider fault classification of semiconductor based cyclic signal for process control. In general, process signal usually take the different pattern depending on some different cause of fault. If faults can be classified by cause of faults, it could improve the process control through a definite and rapid diagnosis. One of the most important thing is a finding definite diagnosis in fault classification, even-though it is classified several times. This paper proposes the method that one-class classifier classify fault causes as each classes. Hotelling T2 chart, kNNDD(k-Nearest Neighbor Data Description), Distance based Novelty Detection are used to perform the one-class classifier. PCA(Principal Component Analysis) is also used to reduce the data dimension because the length of process signal is too long generally. In experiment, it generates the data based real signal patterns from semiconductor process. The objective of this experiment is to compare between the proposed method and SVM(Support Vector Machine). Most of the experiments' results show that proposed method using Distance based Novelty Detection has a good performance in classification and diagnosis problems.
본 논문은 주성분분석기법을 이용한 치아의 다면특징을 기반으로 한 새로운 생체 식별시스템을 제안한다. 치아의 다면 특징들은 정면치아와 좌측, 우측 치아들로 이루어진다. 우리는 실생활 환경에서 보안 접속을 위하여 치아를 이용한 생체식별을 목표로 한다. 다면 치아 영상들은 특별히 고안된 실험환경에서 획득되었으며, 개인 식별을 위한 특징으로 42개의 주성분이 개발되었다. 개인 식별은 학습된 다면치아와 회전된 다면치아 사이의 최소근접기법에 의해 계산되었다. 2도 회전 후의 다면치아 인식성능은 평균값으로 좌측면 치아 95.2%, 우측면 치아 91.3%을 보였다.
본 논문에서는 빅 데이터를 이용하여 범죄 발생 패턴을 분석하는 알고리즘을 제안하고 구현했다. 제안된 알고리즘은 대검찰청에서 수집하여 공개한 범죄관련 빅 데이터를 사용하며, 표준편차 타원체 및 공간밀도 분석과 같은 공간통계분석을 통해 서울시의 2011-2013년 범죄발생 패턴을 분석했다. 범죄 발생 빈도수를 이용하여 범죄발생지역, 시간, 요일, 장소의 위험지수를 구했고, 범죄 패턴 분석 알고리즘을 통해 범죄 발생 확률을 구했다. 이를 통해 공간통계분석을 했다. 제안된 알고리즘의 구현 결과, 서울시의 각 구별로 범죄발생 패턴이 다르다는 것을 파악할 수 있었고, 다양한 범죄발생 패턴을 분석하고 범죄발생확률을 위험지수를 통해 수치화하여 위험도를 정량적으로 산출할 수 있었다.
고속도로의 비반복 혼잡은 주로 돌발상황에 의해 발생된다. 돌발상황의 주요 원인은 교통사고로 알려져 있다. 따라서 교통사고 시 사고처리시간을 정확하게 예측하는 것은 돌발상황 관리에서 매우 중요하다. 본 연구에서는 전국고속도로의 2008-2014년 총 7년치(60,473건)의 사고 자료를 이용하였다. 사고처리시간 예측모형은 과거의 교통사고 이력자료를 바탕으로 비모수모형인 KNN (K-Nearest Neighbor) 알고리즘을 활용하였다. 사고자료 현황 분석결과 사고등급별로 사고처리시간에 미치는 영향이 매우 큰 것으로 분석되었다. 따라서 사고처리시간은 사고등급별로 분류하여 모형을 구축하였다. 그리고 현재 발생한 사고의 교통상황과 도로 기하구조를 반영하기 위하여 교통량, 차로수, 시간대를 구분하여 데이터를 추출하였다. 추출된 데이터 중 현재 교통사고와 유사한 사고를 검색하기 위하여 사고처리시간에 영향을 미치는 요인들을 분석하였다. 마지막으로, 상태간 거리 산정을 위해서 세부항목별 가중치를 산정하였다. 가중치산정은 정규분포 표준화방법을 적용하였고, 이를 통해 사고처리시간을 예측하였다. 본 연구에서 개발된 모형의 예측결과는 기존의 연구들의 결과에 비해 낮은 예측오차(MAPE)를 보여 모형의 우수성을 입증할 수 있다고 판단된다. 본 연구를 통해 고속도로의 돌발상황 발생 시 효율적인 고속도로의 운영관리에 기여할 수 있고, 기존의 모형들이 갖고 있던 한계를 개선 및 보완할 수 있을 것으로 판단된다.
클래스별 원형상(prototype)의 분포가 선형분리 불가능하고 동시에 분산이 서로 다르고 희박한 분포의 원형상에 있어서 입력패턴에 대한 고정밀도의 식별을 행하기 위해 클래스별 최근방 원형상과 그 k 근방 원형상에 있어서 노름(norm) 평균에 기초한 최근방 결정법에 의한 패턴식별방법을 제안한다. 제안하는 방법의 유효성을 평가하기위해 인공적인 패턴과 실제 패턴에 대해 일반적인 k-NN법, 매해라노비스 거리(maharanobis distance), CAP, kCAP, SVM의 각각에 기초한 방법과 제안하는 방법을 적용하여 식별률에 의한 평가를 행하였다. 그 결과 특히, 원형상의 분포가 희박한 경우 제안하는 방법이 다른 방법들에 비해 높은 식별률을 나타냈다.
In this paper, we propose a method of generating a 2D gray image from LiDAR 3D reflection intensity. The proposed method uses the Fully Convolutional Network (FCN) to generate the gray image from 2D reflection intensity which is projected from LiDAR 3D intensity. Both encoder and decoder of FCN are configured with several convolution blocks in the symmetric fashion. Each convolution block consists of a convolution layer with $3{\times}3$ filter, batch normalization layer and activation function. The performance of the proposed method architecture is empirically evaluated by varying depths of convolution blocks. The well-known KITTI data set for various scenarios is used for training and performance evaluation. The simulation results show that the proposed method produces the improvements of 8.56 dB in peak signal-to-noise ratio and 0.33 in structural similarity index measure compared with conventional interpolation methods such as inverse distance weighted and nearest neighbor. The proposed method can be possibly used as an assistance tool in the night-time driving system for autonomous vehicles.
본 논문에서는 최근 들어 활발하게 연구되고 있는 WiFi fingerprint를 이용한 실내 위치 인식 기술에서, Weighted K-Nearest Neighbour 방식을 적용할 때 사용되는 가중치에 대한 분석 결과를 보이고 있다. W-KNN 방식은 그 간결함에도 불구하고 WiFi fingerprint를 이용하는 다른 복잡한 방식들과 유사한 성능을 보이고 있어, 실제적으로 실내 위치 인식 기술로 많이 사용되고 있다. 또한 사전 데이터 처리 방식이나 이 방식에서 사용되는 가중치에 따라 성능 차이를 보이고 있으므로, 이에 대한 연구 및 분석은 중요한 의미가 있다. 여기서는 실제로 측정된 WiFi fingerprint 데이터를 기반으로, 데이터 사전처리 경우와 가중치에 측정값의 분산 및 거리를 적용하는 경우, 지점 위치 평균 개수 K를 사용하는 경우 등에 대해 위치 추정 오차를 분석하고 성능을 비교한다. 이 연구 결과는 실제로 실내 위치 인식 시스템을 구축할 때에 실용적으로 활용될 수 있다.
본 논문은 센서 네트워크의 각 이벤트 영역에서의 데이터 취합 및 전달을 위한 방법들을 비교 평가한다. 이를 위해 이벤트 영역내의 두 가지 전송 방법인 직접적인 전송 방식과 취합 노드를 통한 전송 방식을 비교한다. 직접적인 전송 방식은 모든 노드가 자신이 측정한 데이터를 전송하기 때문에 데이터의 중복성과 네트워크의 트래픽을 증가시키는 단점을 가진다. 반면에 취합 노드를 통한 전송 방식은 이벤트 영역 내에서 노드들의 데이터를 취합함으로써 데이터의 중복을 방지하고 데이터를 간소화 할 수 있다. 취합 노드의 선정 방식은 노드의 위치에 기반 한다. 즉, 취합 노드가 이벤트 영역의 중앙에 위치한 노드 혹은 싱크 노드와 가장 가까운 노드를 선정하는 것이다. 위 두 가지 방법을 바탕으로 취합 노드 선정 방식들을 모델링 하여 이벤트 영역의 증가에 따른 각 방법의 에너지 소비를 측정한다. 이를 위해, 이벤트 노드와 취합 노드의 거리와 취합 노드와 싱크 노드의 거리를 구하고, 이를 수식으로 간략히 정리한다. 또한, 기존의 에너지 수식을 적용하여 거리 수식과 같이 적용하여 에너지 소비 모델을 만든다. 이를 통해 취합 노드 방식들의 에너지 소비를 비교 평가하여 센서 네트워크에 에너지 효율적인 방식을 찾아낸다.
본 논문은 자기 조직화 지도 기법을 기반으로 라이다 기반으로 생성된 깊이 맵과 컬러 이미지의 정보를 기반으로 고밀도 깊이 맵을 생성하는 방법을 제안한다. 제안하는 깊이 맵 업샘플링 방법은 라이다에서 취득되지 않은 공간에 대한 초기 깊이 예측 단계와 초기 깊이 필터링 단계로 구성된다. 초기 깊이 예측 단계에서는 두 장의 컬러 이미지에 대해 스테레오 매칭을 수행하여 초기 깊이 값을 예측한다. 깊이 맵 필터링 단계에서는 예측된 초기 깊이 값의 오차를 감소시키고자 예측 깊이 픽셀에 대하여 주변의 실측 깊이 값을 이용하여 자기 조직화 지도 기법을 수행한다. 자기 조직화 기법 수행 시 예측 깊이 픽셀과 실측 깊이 픽셀의 거리와, 각 픽셀에 대응되는 컬러 값의 차이에 따라 가중치를 결정한다. 본 논문에서는 성능 비교를 위하여 깊이 맵 업샘플링 방법으로 널리 사용되고 있는 양방향 필터 및 k-최근접 이웃 알고리즘과 비교를 진행하였다. 제안하는 방법은 양방향 필터 방법 및 k-최근접 이웃 알고리즘 대비 MAE 관점에서 각각 약 6.4%, 8.6%이 감소하였고 RMSE 관점에서 각각 약 10.8%, 14.3%이 감소하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.