• 제목/요약/키워드: Nearest neighbor distance Method

검색결과 67건 처리시간 0.02초

Face Representation and Face Recognition using Optimized Local Ternary Patterns (OLTP)

  • Raja, G. Madasamy;Sadasivam, V.
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.402-410
    • /
    • 2017
  • For many years, researchers in face description area have been representing and recognizing faces based on different methods that include subspace discriminant analysis, statistical learning and non-statistics based approach etc. But still automatic face recognition remains an interesting but challenging problem. This paper presents a novel and efficient face image representation method based on Optimized Local Ternary Pattern (OLTP) texture features. The face image is divided into several regions from which the OLTP texture feature distributions are extracted and concatenated into a feature vector that can act as face descriptor. The recognition is performed using nearest neighbor classification method with Chi-square distance as a similarity measure. Extensive experimental results on Yale B, ORL and AR face databases show that OLTP consistently performs much better than other well recognized texture models for face recognition.

단일 클래스 분류기법을 이용한 반도체 공정 주기 신호의 이상분류 (One-class Classification based Fault Classification for Semiconductor Process Cyclic Signal)

  • 조민영;백준걸
    • 산업공학
    • /
    • 제25권2호
    • /
    • pp.170-177
    • /
    • 2012
  • Process control is essential to operate the semiconductor process efficiently. This paper consider fault classification of semiconductor based cyclic signal for process control. In general, process signal usually take the different pattern depending on some different cause of fault. If faults can be classified by cause of faults, it could improve the process control through a definite and rapid diagnosis. One of the most important thing is a finding definite diagnosis in fault classification, even-though it is classified several times. This paper proposes the method that one-class classifier classify fault causes as each classes. Hotelling T2 chart, kNNDD(k-Nearest Neighbor Data Description), Distance based Novelty Detection are used to perform the one-class classifier. PCA(Principal Component Analysis) is also used to reduce the data dimension because the length of process signal is too long generally. In experiment, it generates the data based real signal patterns from semiconductor process. The objective of this experiment is to compare between the proposed method and SVM(Support Vector Machine). Most of the experiments' results show that proposed method using Distance based Novelty Detection has a good performance in classification and diagnosis problems.

주성분분석을 이용한 치아의 다면 특징 기반 생체식별 (Biometrics Based on Multi-View Features of Teeth Using Principal Component Analysis)

  • 정찬욱;김명수;신영숙
    • 인지과학
    • /
    • 제18권4호
    • /
    • pp.445-455
    • /
    • 2007
  • 본 논문은 주성분분석기법을 이용한 치아의 다면특징을 기반으로 한 새로운 생체 식별시스템을 제안한다. 치아의 다면 특징들은 정면치아와 좌측, 우측 치아들로 이루어진다. 우리는 실생활 환경에서 보안 접속을 위하여 치아를 이용한 생체식별을 목표로 한다. 다면 치아 영상들은 특별히 고안된 실험환경에서 획득되었으며, 개인 식별을 위한 특징으로 42개의 주성분이 개발되었다. 개인 식별은 학습된 다면치아와 회전된 다면치아 사이의 최소근접기법에 의해 계산되었다. 2도 회전 후의 다면치아 인식성능은 평균값으로 좌측면 치아 95.2%, 우측면 치아 91.3%을 보였다.

  • PDF

빅 데이터를 이용한 범죄패턴 분석 알고리즘의 구현 (Implementation of Crime Pattern Analysis Algorithm using Big Data)

  • 차경현;김경호;황유민;이동창;김상지;김진영
    • 한국위성정보통신학회논문지
    • /
    • 제9권4호
    • /
    • pp.57-62
    • /
    • 2014
  • 본 논문에서는 빅 데이터를 이용하여 범죄 발생 패턴을 분석하는 알고리즘을 제안하고 구현했다. 제안된 알고리즘은 대검찰청에서 수집하여 공개한 범죄관련 빅 데이터를 사용하며, 표준편차 타원체 및 공간밀도 분석과 같은 공간통계분석을 통해 서울시의 2011-2013년 범죄발생 패턴을 분석했다. 범죄 발생 빈도수를 이용하여 범죄발생지역, 시간, 요일, 장소의 위험지수를 구했고, 범죄 패턴 분석 알고리즘을 통해 범죄 발생 확률을 구했다. 이를 통해 공간통계분석을 했다. 제안된 알고리즘의 구현 결과, 서울시의 각 구별로 범죄발생 패턴이 다르다는 것을 파악할 수 있었고, 다양한 범죄발생 패턴을 분석하고 범죄발생확률을 위험지수를 통해 수치화하여 위험도를 정량적으로 산출할 수 있었다.

사고등급별 고속도로 교통사고 처리시간 예측모형 개발 (Development of Freeway Traffic Incident Clearance Time Prediction Model by Accident Level)

  • 이숭봉;한동희;이영인
    • 대한교통학회지
    • /
    • 제33권5호
    • /
    • pp.497-507
    • /
    • 2015
  • 고속도로의 비반복 혼잡은 주로 돌발상황에 의해 발생된다. 돌발상황의 주요 원인은 교통사고로 알려져 있다. 따라서 교통사고 시 사고처리시간을 정확하게 예측하는 것은 돌발상황 관리에서 매우 중요하다. 본 연구에서는 전국고속도로의 2008-2014년 총 7년치(60,473건)의 사고 자료를 이용하였다. 사고처리시간 예측모형은 과거의 교통사고 이력자료를 바탕으로 비모수모형인 KNN (K-Nearest Neighbor) 알고리즘을 활용하였다. 사고자료 현황 분석결과 사고등급별로 사고처리시간에 미치는 영향이 매우 큰 것으로 분석되었다. 따라서 사고처리시간은 사고등급별로 분류하여 모형을 구축하였다. 그리고 현재 발생한 사고의 교통상황과 도로 기하구조를 반영하기 위하여 교통량, 차로수, 시간대를 구분하여 데이터를 추출하였다. 추출된 데이터 중 현재 교통사고와 유사한 사고를 검색하기 위하여 사고처리시간에 영향을 미치는 요인들을 분석하였다. 마지막으로, 상태간 거리 산정을 위해서 세부항목별 가중치를 산정하였다. 가중치산정은 정규분포 표준화방법을 적용하였고, 이를 통해 사고처리시간을 예측하였다. 본 연구에서 개발된 모형의 예측결과는 기존의 연구들의 결과에 비해 낮은 예측오차(MAPE)를 보여 모형의 우수성을 입증할 수 있다고 판단된다. 본 연구를 통해 고속도로의 돌발상황 발생 시 효율적인 고속도로의 운영관리에 기여할 수 있고, 기존의 모형들이 갖고 있던 한계를 개선 및 보완할 수 있을 것으로 판단된다.

k 근방 원형상에서 최근방 결정법에 의한 패턴식별 (Pattern Classification using Closest Decision Method in k Nearest Neighbor Prototypes)

  • 김응규;이수종
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2008년도 한국컴퓨터종합학술대회논문집 Vol.35 No.1 (C)
    • /
    • pp.456-461
    • /
    • 2008
  • 클래스별 원형상(prototype)의 분포가 선형분리 불가능하고 동시에 분산이 서로 다르고 희박한 분포의 원형상에 있어서 입력패턴에 대한 고정밀도의 식별을 행하기 위해 클래스별 최근방 원형상과 그 k 근방 원형상에 있어서 노름(norm) 평균에 기초한 최근방 결정법에 의한 패턴식별방법을 제안한다. 제안하는 방법의 유효성을 평가하기위해 인공적인 패턴과 실제 패턴에 대해 일반적인 k-NN법, 매해라노비스 거리(maharanobis distance), CAP, kCAP, SVM의 각각에 기초한 방법과 제안하는 방법을 적용하여 식별률에 의한 평가를 행하였다. 그 결과 특히, 원형상의 분포가 희박한 경우 제안하는 방법이 다른 방법들에 비해 높은 식별률을 나타냈다.

  • PDF

딥러닝 기반 3차원 라이다의 반사율 세기 신호를 이용한 흑백 영상 생성 기법 (Deep Learning Based Gray Image Generation from 3D LiDAR Reflection Intensity)

  • 김현구;유국열;박주현;정호열
    • 대한임베디드공학회논문지
    • /
    • 제14권1호
    • /
    • pp.1-9
    • /
    • 2019
  • In this paper, we propose a method of generating a 2D gray image from LiDAR 3D reflection intensity. The proposed method uses the Fully Convolutional Network (FCN) to generate the gray image from 2D reflection intensity which is projected from LiDAR 3D intensity. Both encoder and decoder of FCN are configured with several convolution blocks in the symmetric fashion. Each convolution block consists of a convolution layer with $3{\times}3$ filter, batch normalization layer and activation function. The performance of the proposed method architecture is empirically evaluated by varying depths of convolution blocks. The well-known KITTI data set for various scenarios is used for training and performance evaluation. The simulation results show that the proposed method produces the improvements of 8.56 dB in peak signal-to-noise ratio and 0.33 in structural similarity index measure compared with conventional interpolation methods such as inverse distance weighted and nearest neighbor. The proposed method can be possibly used as an assistance tool in the night-time driving system for autonomous vehicles.

WiFi 핑거프린트 위치추정 방식에서 W-KNN의 가중치에 관한 연구 (A Study on the Weight of W-KNN for WiFi Fingerprint Positioning)

  • 오종택
    • 한국인터넷방송통신학회논문지
    • /
    • 제17권6호
    • /
    • pp.105-111
    • /
    • 2017
  • 본 논문에서는 최근 들어 활발하게 연구되고 있는 WiFi fingerprint를 이용한 실내 위치 인식 기술에서, Weighted K-Nearest Neighbour 방식을 적용할 때 사용되는 가중치에 대한 분석 결과를 보이고 있다. W-KNN 방식은 그 간결함에도 불구하고 WiFi fingerprint를 이용하는 다른 복잡한 방식들과 유사한 성능을 보이고 있어, 실제적으로 실내 위치 인식 기술로 많이 사용되고 있다. 또한 사전 데이터 처리 방식이나 이 방식에서 사용되는 가중치에 따라 성능 차이를 보이고 있으므로, 이에 대한 연구 및 분석은 중요한 의미가 있다. 여기서는 실제로 측정된 WiFi fingerprint 데이터를 기반으로, 데이터 사전처리 경우와 가중치에 측정값의 분산 및 거리를 적용하는 경우, 지점 위치 평균 개수 K를 사용하는 경우 등에 대해 위치 추정 오차를 분석하고 성능을 비교한다. 이 연구 결과는 실제로 실내 위치 인식 시스템을 구축할 때에 실용적으로 활용될 수 있다.

무선 센서 네트워크에서 이벤트 기반의 에너지 효율적 데이터 취합 및 전송 (Energy-Efficient Data Aggregation and Dissemination based on Events in Wireless Sensor Networks)

  • 남춘성;장경수;신동렬
    • 한국인터넷방송통신학회논문지
    • /
    • 제11권1호
    • /
    • pp.35-40
    • /
    • 2011
  • 본 논문은 센서 네트워크의 각 이벤트 영역에서의 데이터 취합 및 전달을 위한 방법들을 비교 평가한다. 이를 위해 이벤트 영역내의 두 가지 전송 방법인 직접적인 전송 방식과 취합 노드를 통한 전송 방식을 비교한다. 직접적인 전송 방식은 모든 노드가 자신이 측정한 데이터를 전송하기 때문에 데이터의 중복성과 네트워크의 트래픽을 증가시키는 단점을 가진다. 반면에 취합 노드를 통한 전송 방식은 이벤트 영역 내에서 노드들의 데이터를 취합함으로써 데이터의 중복을 방지하고 데이터를 간소화 할 수 있다. 취합 노드의 선정 방식은 노드의 위치에 기반 한다. 즉, 취합 노드가 이벤트 영역의 중앙에 위치한 노드 혹은 싱크 노드와 가장 가까운 노드를 선정하는 것이다. 위 두 가지 방법을 바탕으로 취합 노드 선정 방식들을 모델링 하여 이벤트 영역의 증가에 따른 각 방법의 에너지 소비를 측정한다. 이를 위해, 이벤트 노드와 취합 노드의 거리와 취합 노드와 싱크 노드의 거리를 구하고, 이를 수식으로 간략히 정리한다. 또한, 기존의 에너지 수식을 적용하여 거리 수식과 같이 적용하여 에너지 소비 모델을 만든다. 이를 통해 취합 노드 방식들의 에너지 소비를 비교 평가하여 센서 네트워크에 에너지 효율적인 방식을 찾아낸다.

라이다 깊이 맵과 이미지를 사용한 자기 조직화 지도 기반의 고밀도 깊이 맵 생성 방법 (Dense-Depth Map Estimation with LiDAR Depth Map and Optical Images based on Self-Organizing Map)

  • 최한솔;이종석;심동규
    • 방송공학회논문지
    • /
    • 제26권3호
    • /
    • pp.283-295
    • /
    • 2021
  • 본 논문은 자기 조직화 지도 기법을 기반으로 라이다 기반으로 생성된 깊이 맵과 컬러 이미지의 정보를 기반으로 고밀도 깊이 맵을 생성하는 방법을 제안한다. 제안하는 깊이 맵 업샘플링 방법은 라이다에서 취득되지 않은 공간에 대한 초기 깊이 예측 단계와 초기 깊이 필터링 단계로 구성된다. 초기 깊이 예측 단계에서는 두 장의 컬러 이미지에 대해 스테레오 매칭을 수행하여 초기 깊이 값을 예측한다. 깊이 맵 필터링 단계에서는 예측된 초기 깊이 값의 오차를 감소시키고자 예측 깊이 픽셀에 대하여 주변의 실측 깊이 값을 이용하여 자기 조직화 지도 기법을 수행한다. 자기 조직화 기법 수행 시 예측 깊이 픽셀과 실측 깊이 픽셀의 거리와, 각 픽셀에 대응되는 컬러 값의 차이에 따라 가중치를 결정한다. 본 논문에서는 성능 비교를 위하여 깊이 맵 업샘플링 방법으로 널리 사용되고 있는 양방향 필터 및 k-최근접 이웃 알고리즘과 비교를 진행하였다. 제안하는 방법은 양방향 필터 방법 및 k-최근접 이웃 알고리즘 대비 MAE 관점에서 각각 약 6.4%, 8.6%이 감소하였고 RMSE 관점에서 각각 약 10.8%, 14.3%이 감소하였다.