• Title/Summary/Keyword: Nearest neighbor distance Method

Search Result 67, Processing Time 0.02 seconds

Combining Different Distance Measurements Methods with Dempster-Shafer-Theory for Recognition of Urdu Character Script

  • Khan, Yunus;Nagar, Chetan;Kaushal, Devendra S.
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.1
    • /
    • pp.16-23
    • /
    • 2012
  • In this paper we discussed a new methodology for Urdu Character Recognition system using Dempster-Shafer theory which can powerfully estimate the similarity ratings between a recognized character and sampling characters in the character database. Recognition of character is done by five probability calculation methods such as (similarity, hamming, linear correlation, cross-correlation, nearest neighbor) with Dempster-Shafer theory of belief functions. The main objective of this paper is to Recognition of Urdu letters and numerals through five similarity and dissimilarity algorithms to find the similarity between the given image and the standard template in the character recognition system. In this paper we develop a method to combine the results of the different distance measurement methods using the Dempster-Shafer theory. This idea enables us to obtain a single precision result. It was observed that the combination of these results ultimately enhanced the success rate.

A Study on Fault Detection and Diagnosis of Gear Damages - A Comparison between Wavelet Transform Analysis and Kullback Discrimination Information - (기어의 이상검지 및 진단에 관한 연구 -Wavelet Transform해석과 KDI의 비교-)

  • Kim, Tae-Gu;Kim, Kwang-Il
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.1-7
    • /
    • 2000
  • This paper presents the approach involving fault detection and diagnosis of gears using pattern recognition and Wavelet transform. It describes result of the comparison between KDI (Kullback Discrimination Information) with the nearest neighbor classification rule as one of pattern recognition methods and Wavelet transform to know a way to detect and diagnosis of gear damages experimentally. To model the damages 1) Normal (no defect), 2) one tooth is worn out, 3) All teeth faces are worn out 4) One tooth is broken. The vibration sensor was attached on the bearing housing. This produced the total time history data that is 20 pieces of each condition. We chose the standard data and measure distance between standard and tested data. In Wavelet transform analysis method, the time series data of magnitude in specified frequency (rotary and mesh frequency) were earned. As a result, the monitoring system using Wavelet transform method and KDI with nearest neighbor classification rule successfully detected and classified the damages from the experimental data.

  • PDF

k-Nearest Neighbor Querv Processing using Approximate Indexing in Road Network Databases (도로 네트워크 데이타베이스에서 근사 색인을 이용한 k-최근접 질의 처리)

  • Lee, Sang-Chul;Kim, Sang-Wook
    • Journal of KIISE:Databases
    • /
    • v.35 no.5
    • /
    • pp.447-458
    • /
    • 2008
  • In this paper, we address an efficient processing scheme for k-nearest neighbor queries to retrieve k static objects in road network databases. Existing methods cannot expect a query processing speed-up by index structures in road network databases, since it is impossible to build an index by the network distance, which cannot meet the triangular inequality requirement, essential for index creation, but only possible in a totally ordered set. Thus, these previous methods suffer from a serious performance degradation in query processing. Another method using pre-computed network distances also suffers from a serious storage overhead to maintain a huge amount of pre-computed network distances. To solve these performance and storage problems at the same time, this paper proposes a novel approach that creates an index for moving objects by approximating their network distances and efficiently processes k-nearest neighbor queries by means of the approximate index. For this approach, we proposed a systematic way of mapping each moving object on a road network into the corresponding absolute position in the m-dimensional space. To meet the triangular inequality this paper proposes a new notion of average network distance, and uses FastMap to map moving objects to their corresponding points in the m-dimensional space. After then, we present an approximate indexing algorithm to build an R*-tree, a multidimensional index, on the m-dimensional points of moving objects. The proposed scheme presents a query processing algorithm capable of efficiently evaluating k-nearest neighbor queries by finding k-nearest points (i.e., k-nearest moving objects) from the m-dimensional index. Finally, a variety of extensive experiments verifies the performance enhancement of the proposed approach by performing especially for the real-life road network databases.

Tree Trunk Level Distribution of Entry Hole by Platypus koryoensis (Coleoptera: Platypodidae) and Its Implication to Tree Damage (광릉긴나무좀(Coleoptera: Platypodidae)의 수간내 분포와 참나무 피해)

  • Choi, Won-Il;Lee, Jung-Su;Choi, Kwang-Sik;Kim, Jong-Kuk;Shin, Sang-Chul
    • Korean journal of applied entomology
    • /
    • v.47 no.2
    • /
    • pp.127-131
    • /
    • 2008
  • Ambrosia beetle, Platypus koryoensis, is a vector of oak wilt disease caused by Raffaelea sp. in Korea. The degree of damage by oak wilt disease was dependent on the density of the beetles in the oak trunk, a relationship between the degree of damage by oak wilt disease and the density of beetle on the basis of the number of entry hole was studied. Entry hole distribution within tree trunk was analyzed by the nearest neighbor method. Thirty four oak trees (Quercus mongolica) located in survey area were selected and then degree of damage, the number of attack hole/$623cm^2$ in upper (50cm from the surface) and lower (surface) trunk and the nearest neighbor distance between the holes were measured. The number of hole and the nearest neighbor distance in upper and lower part were positively correlated with each other. As the degree of damage was severer, the number of the holes increased, whereas the nearest neighbor distance decreased. The distribution pattern of the hole was changed from clumped one to uniform as the severity of damage increased. These results suggested that Platypus koryoensis attacked the oak tree in concentrative manner at initial stage of attack but at final stage, it distributed uniformly to reduce intraspecific competition between the beetles.

Nearest Neighbor Based Prototype Classification Preserving Class Regions

  • Hwang, Doosung;Kim, Daewon
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1345-1357
    • /
    • 2017
  • A prototype selection method chooses a small set of training points from a whole set of class data. As the data size increases, the selected prototypes play a significant role in covering class regions and learning a discriminate rule. This paper discusses the methods for selecting prototypes in a classification framework. We formulate a prototype selection problem into a set covering optimization problem in which the sets are composed with distance metric and predefined classes. The formulation of our problem makes us draw attention only to prototypes per class, not considering the other class points. A training point becomes a prototype by checking the number of neighbors and whether it is preselected. In this setting, we propose a greedy algorithm which chooses the most relevant points for preserving the class dominant regions. The proposed method is simple to implement, does not have parameters to adapt, and achieves better or comparable results on both artificial and real-world problems.

Prediction of arrhythmia using multivariate time series data (다변량 시계열 자료를 이용한 부정맥 예측)

  • Lee, Minhai;Noh, Hohsuk
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.5
    • /
    • pp.671-681
    • /
    • 2019
  • Studies on predicting arrhythmia using machine learning have been actively conducted with increasing number of arrhythmia patients. Existing studies have predicted arrhythmia based on multivariate data of feature variables extracted from RR interval data at a specific time point. In this study, we consider that the pattern of the heart state changes with time can be important information for the arrhythmia prediction. Therefore, we investigate the usefulness of predicting the arrhythmia with multivariate time series data obtained by extracting and accumulating the multivariate vectors of the feature variables at various time points. When considering 1-nearest neighbor classification method and its ensemble for comparison, it is confirmed that the multivariate time series data based method can have better classification performance than the multivariate data based method if we select an appropriate time series distance function.

Efficient Path Finding Based on the $A^*$ algorithm for Processing k-Nearest Neighbor Queries in Road Network Databases (도로 네트워크에서 $A^*$ 알고리즘을 이용한 k-최근접 이웃 객체에 대한 효과적인 경로 탐색 방법)

  • Shin, Sung-Hyun;Lee, Sang-Chul;Kim, Sang-Wook;Lee, Jung-Hoon;Im, Eul-Kyu
    • Journal of KIISE:Databases
    • /
    • v.36 no.5
    • /
    • pp.405-410
    • /
    • 2009
  • This paper proposes an efficient path finding scheme capable of searching the paths to k static objects from a given query point, aiming at both improving the legacy k-nearest neighbor search and making it easily applicable to the road network environment. To the end of improving the speed of finding one-to-many paths, the modified A* obviates the duplicated part of node scans involved in the multiple executions of a one-to-one path finding algorithm. Additionally, the cost to the each object found in this step makes it possible to finalize the k objects according to the network distance from the candidate set as well as to order them by the path cost. Experiment results show that the proposed scheme has the accuracy of around 100% and improves the search speed by $1.3{\sim}3.0$ times of k-nearest neighbor searches, compared with INE, post-Dijkstra, and $na{\ddot{i}}ve$ method.

A Representation and Matching Method for Shape-based Leaf Image Retrieval (모양기반 식물 잎 이미지 검색을 위한 표현 및 매칭 기법)

  • Nam, Yun-Young;Hwang, Een-Jun
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.11
    • /
    • pp.1013-1020
    • /
    • 2005
  • This paper presents an effective and robust leaf image retrieval system based on shape feature. Specifically, we propose an improved MPP algorithm for more effective representation of leaf images and show a new dynamic matching algorithm that basically revises the Nearest Neighbor search to reduce the matching time. In particular, both leaf shape and leaf arrangement can be sketched in the query for better accuracy and efficiency. In the experiment, we compare our proposed method with other methods including Centroid Contour Distance(CCD), Fourier Descriptor, Curvature Scale Space Descriptor(CSSD), Moment Invariants, and MPP. Experimental results on one thousand leaf images show that our approach achieves a better performance than other methods.

Detection and Classification of Bearing Flaking Defects by Using Kullback Discrimination Information (KDI)

  • Kim, Tae-Gu;Takabumi Fukuda;Hisaji Shimizu
    • International Journal of Safety
    • /
    • v.1 no.1
    • /
    • pp.28-35
    • /
    • 2002
  • Kullback Discrimination Information (KDI) is one of the pattern recognition methods. KDI defined as a measure of the mutual dissimilarity computed between two time series was studied for detection and classification of bearing flaking on outer-race and inner-races. To model the damages, the bearings in normal condition, outer-race flaking condition and inner-races flaking condition were provided. The vibration sensor was attached by the bearing housing. This produced the total 25 pieces of data each condition, and we chose the standard data and measure of distance between standard and tested data. It is difficult to detect the flaking because similar pulses come out when balls pass the defection point. The detection and classification method for inner and outer races are defected by KDI and nearest neighbor classification rule is proposed and its high performance is also shown.

Batch Processing Algorithm for Moving k-Farthest Neighbor Queries in Road Networks (도로망에서 움직이는 k-최원접 이웃 질의를 위한 일괄 처리 알고리즘)

  • Cho, Hyung-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.223-224
    • /
    • 2021
  • Recently, k-farthest neighbor (kFN) queries have not as much attention as k-nearest neighbor (kNN) queries. Therefore, this study considers moving k-farthest neighbor (MkFN) queries for spatial network databases. Given a positive integer k, a moving query point q, and a set of data points P, MkFN queries can constantly retrieve k data points that are farthest from the query point q. The challenge with processing MkFN queries in spatial networks is to avoid unnecessary or superfluous distance calculations between the query and associated data points. This study proposes a batch processing algorithm, called MOFA, to enable efficient processing of MkFN queries in spatial networks. MOFA aims to avoid dispensable distance computations based on the clustering of both query and data points. Moreover, a time complexity analysis is presented to clarify the effect of the clustering method on the query processing time. Extensive experiments using real-world roadmaps demonstrated the efficiency and scalability of the MOFA when compared with a conventional solution.

  • PDF