• 제목/요약/키워드: Nearest Neighbor Search

검색결과 123건 처리시간 0.029초

내용기반 검색을 위한 SOMk-NN탐색 알고리즘 (SOMk-NN Search Algorithm for Content-Based Retrieval)

  • 오군석;김판구
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제29권5호
    • /
    • pp.358-366
    • /
    • 2002
  • 특징정보를 기반으로 한 유사 이미지 검색은 이미지 데이타베이스에 있어서 중요한 과제의 하나이다. 이미지 데이타의 특징정보는 각 이미지를 식별하는데 유용한 정보이다. 본 논문에서는 자기 조직화 맵 기반의 고속 k-NN 탐색 알고리즘을 제안한다. 자기 조직화 맵은 고차원 특징벡터를 2차원 공간에 맵핑하여 위상특징 맵을 생성한다. 위상특징 맵은 입력 데이타의 특징공간과 상호관계(유사성)를 가지고 있으며, 인접노드에 서로 유사한 특징벡터가 클러스터링된다. 그러므로 위상특징 맵상의 각 노드에는 노드 벡터와 각 노드벡터에 가장 가까운 유사 이미지가 분류된다. 이러한 자기 조직화 맵에 의한 유사 이미지 분류결과에 대하여 k-NV 탐색을 구현하기 위하여, (1) 위상특징 맵에 대한 접근방법, (2) 고속탐색을 위한 pruning strategy의 적용을 실현하였다. 본 연구에서는 실험을 통하여 실제 이미지로부터 추출한 색상 특징을 사용하여 제안한 알고리즘의 성능을 평가함으로써 유사 이미지 검색에 유효한 견과를 얻을 수 있었다.

DNN과 k-opt를 적용한 대규모 외판원 문제의 최적 해법 (Optimal Solution of a Large-scale Travelling Salesman Problem applying DNN and k-opt)

  • 이상운
    • 한국인터넷방송통신학회논문지
    • /
    • 제15권4호
    • /
    • pp.249-257
    • /
    • 2015
  • 본 논문은 지금까지 해결하지 못한 난제 중 하나인 외판원 문제의 최적 해를 구하는 발견적 알고리즘을 제안한다. 제안된 알고리즘은 초기 경로를 결정하기 위해 기존의 DNN을 변형한 SW-DNN, DW-DNN과 DC-DNN을 제안하였다. 초기 해는 DNN, SW-DNN, DW-DNN과 DC-DNN을 적용하여 최소 경로 길이를 가진 방법을 선택한다. 초기 해에 대해 최적 해를 구하기 위해 먼저 삭제 대상 간선을 선택하는 방법을 결정하였으며, 이들 간선들에 대해 지역 탐색 방법인 k-opt 중에서 2, 2.5, 3-opt를 먼저 적용하고, 삭제 대상 간선들 중 삭제되지 않은 간선들에 대해 4-opt를 적용하였다. 제안된 알고리즘을 대규모의 TSP인 26개의 유럽 도시들을 방문하는 TSP-1과 49개의 미국 도시들을 방문하는 TSP-2에 적용한 결과 모두 최적 해를 구하는데 성공하였다. 제안된 알고리즘은 지금까지 발견적 방법으로는 TSP의 최적 해를 구하지 못한다는 미신을 타파하였고, TSP의 알고리즘으로 적용할 수 있을 것이다.

자기 조직화 맵 기반 유사화상 검색의 고속화 수법 (A Method of Highspeed Similarity Retrieval based on Self-Organizing Maps)

  • 오군석;양성기;배상현;김판구
    • 정보처리학회논문지B
    • /
    • 제8B권5호
    • /
    • pp.515-522
    • /
    • 2001
  • 특징정보를 기반으로 한 유사화상 검색은 화상 데이터베이스에 있어서 중요한 과제의 하나이다. 화상 데이터의 특징정보를 각 화상을 식별하는데 유용한 정보이다. 본 논문에서는 자기조직화 맵기반의 고속 k-NN 탐색 알고리즘을 제안한다. 자기조직화 맵은 학습을 통하여 고차원 특징벡터를 2차원 공간에 맵핑함으로서 위상 특징맵을 생성한다. 위상 특징맵은 입력 데이터의 특징공간의 상호간의 유사성을 가지고 있으며, 각 노드는 노드벡터와 각 노드벡터에 가장 가까운 유사화상이 분류된다. 이러한 자기조직화 맴에 의한 유사화상 분류결과에 대한 k-NN 탐색을 구현하기 위한여, (1) 위상특징 맵에 대한 접근방법, (2) 고속탐색을 위한 pruning strategy의 적용을 실현하였다. 본 연구에서는 실험을 통하여 실제화상으로부터 추출한 색상 특징을 사용하여 제안한 알고리즘의 성능을 평가함으로써 유사화상 검색에 유효한 결과를 얻을 수 있었다.

  • PDF

An Improvement Video Search Method for VP-Tree by using a Trigonometric Inequality

  • Lee, Samuel Sangkon;Shishibori, Masami;Han, Chia Y.
    • Journal of Information Processing Systems
    • /
    • 제9권2호
    • /
    • pp.315-332
    • /
    • 2013
  • This paper presents an approach for improving the use of VP-tree in video indexing and searching. A vantage-point tree or VP-tree is one of the metric space-based indexing methods used in multimedia database searches and data retrieval. Instead of relying on the Euclidean distance as a measure of search space, the proposed approach focuses on the trigonometric inequality for compressing the search range, which thus, improves the search performance. A test result of using 10,000 video files shows that this method reduced the search time by 5-12%, as compared to the existing method that uses the AESA algorithm.

최인접 거리 비율 정합을 이용한 영상 특징점 선택 방법 (Image Feature Point Selection Method Using Nearest Neighbor Distance Ratio Matching)

  • 이준우;정재협;강종욱;나상일;정동석
    • 전자공학회논문지
    • /
    • 제49권12호
    • /
    • pp.124-130
    • /
    • 2012
  • 본 논문에서는 현재 진행 중인 MPEG(Motion Picture Experts Group, ISO/IEC JTC1 SC29 WG11)의 표준화 작업 중 CDVS(Compact Descriptor for Visual Search)의 CE-7(Core Experiment)인 특징점 선택에 대한 방법을 제안한다. 서술자의 경량화를 위해서는 영상으로부터 추출된 많은 수의 특징점들 중에서 영상 정합에 사용될 중요한 특징점들을 선택해야 한다. 본 논문에서는 최 인접 거리 비율 정합(Nearest Neighbor distance ratio matching) 방법에 의해 영상 정합 단계에서 사용되지 않고 버려지는 특징점들을 미리 추출 단에서 제거하는 방법 제안하였다. 제안된 방법을 통하여 적은 비트 전송률을 요하는 시스템에서 특징점의 낭비를 피할 수 있고 결과적으로 추가적인 특징점을 사용할 수 있으므로 전체적인 성능 향상을 얻을 수 있었다. 제안된 알고리즘을 통하여 Pair-wise 정합 실험에서 기존의 Test Model 대비 최고 2.3%의 성공율(True positive rate)의 향상을 보였다.

Design and Implement of a Framework for a Hybrid Broadcast System using Voronoi Diagram for NN Search

  • Seokjin Im
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권2호
    • /
    • pp.22-30
    • /
    • 2023
  • The portable mobile devices with high performance and high speed 5G network activate and explode the demands for ubiquitous information services that remove the limitations of time for the communication and places to request for the information. NN (Nearest Neighbor) search is one of the most important types of queries to be processed efficiently in the information services. Various indexes have been proposed to support efficient NN search in the wireless broadcast system. The indexes adopting Hilbert curve, grid partition or Voronoi diagram enable the clients to search for NN quickly in the wireless broadcast channel. It is necessary that an efficient means to evaluate the performances of various indexes. In this paper, we propose an open framework that can adopt a variety of indexing schemes and evaluate and compare the performances of them. The proposed framework is organized with open and flexible structure that can adopt hybrid indexing schemes extensible to Voronoi diagram as well as simple indexing schemes. With the implemented framework, we demonstrate the efficiency and scalability and flexibility of the proposed framework by evaluating various indexing schemes for NN query.

모양 기반의 식물 잎 이미지 검색 시스템 (Shape-Based Leaf Image Retrieval System)

  • 남윤영;황인준
    • 정보처리학회논문지D
    • /
    • 제13D권1호
    • /
    • pp.29-36
    • /
    • 2006
  • 본 논문에서는 식물 잎 모양을 기반으로 이미지를 표현하고 검색하는 식물 잎 이미지 검색 시스템을 보인다. 보다 효과적인 잎의 모양 표현을 위하여, MPP(Minimum Perimeter Polygons) 알고리즘을 개선하였고, 처리시간을 줄이기 위하여, NN(Nearest Neighbor) 검색을 개선한 동적 매칭알고리즘을 제안하였다. 본 시스템은 사용자에게 질의 이미지를 업로드하는 인터페이스를 제공하거나 모양 특징에 기반한 질의를 생성하는 도구를 제공하고 유사도에 따른 이미지를 검색한다. 검색의 편의성을 위해, 웹상에서 잎 모양과 잎차례를 스케치하여 손쉽게 질의할 수 있게 하였다. 실험에서는, 한국에 자생하는 식물 이미지 데이터베이스를 구축하였으며, 질의를 통해 검색된 유사한 이미지의 개수를 기반으로 성능을 평가하였다.

모양기반 식물 잎 이미지 검색을 위한 표현 및 매칭 기법 (A Representation and Matching Method for Shape-based Leaf Image Retrieval)

  • 남윤영;황인준
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권11호
    • /
    • pp.1013-1020
    • /
    • 2005
  • 본 논문은 모양 특성을 이용한 효과적인 식물 잎 이미지 검색 시스템을 제시한다. 잎 이미지의 더 효과적인 표현을 위해 개선된 MPP 알고리즘을 제안하고, 매칭에 소요되는 시간을 줄이기 위해 기존의 Nearest Neighbor(NN) 검색을 수정한 동적인 매칭 알고리즘을 제시한다. 특히, 더 나은 정확율과 효율성을 위해, 잎 모양과 잎차례를 스케치하여 질의할 수 있도록 하였다. 실험에서는 제안한 알고리즘과 기존의 알고리즘인 CCD(Centroid Contour Distance), Fourier Descriptor. Curvature Scale Space Descriptor (CSSD), Moment Invariants, MPP와 비교하였다. 1000여개의 식물 잎 이미지를 통한 실험결과는 제안한 방법이 기존의 기법보다 더 좋은 성능임을 보였다.

Study on failure mode prediction of reinforced concrete columns based on class imbalanced dataset

  • Mingyi Cai;Guangjun Sun;Bo Chen
    • Earthquakes and Structures
    • /
    • 제27권3호
    • /
    • pp.177-189
    • /
    • 2024
  • Accurately predicting the failure modes of reinforced concrete (RC) columns is essential for structural design and assessment. In this study, the challenges of imbalanced datasets and complex feature selection in machine learning (ML) methods were addressed through an optimized ML approach. By combining feature selection and oversampling techniques, the prediction of seismic failure modes in rectangular RC columns was improved. Two feature selection methods were used to identify six input parameters. To tackle class imbalance, the Borderline-SMOTE1 algorithm was employed, enhancing the learning capabilities of the models for minority classes. Eight ML algorithms were trained and fine-tuned using k-fold shuffle split cross-validation and grid search. The results showed that the artificial neural network model achieved 96.77% accuracy, while k-nearest neighbor, support vector machine, and random forest models each achieved 95.16% accuracy. The balanced dataset led to significant improvements, particularly in predicting the flexure-shear failure mode, with accuracy increasing by 6%, recall by 8%, and F1 scores by 7%. The use of the Borderline-SMOTE1 algorithm significantly improved the recognition of samples at failure mode boundaries, enhancing the classification performance of models like k-nearest neighbor and decision tree, which are highly sensitive to data distribution and decision boundaries. This method effectively addressed class imbalance and selected relevant features without requiring complex simulations like traditional methods, proving applicable for discerning failure modes in various concrete members under seismic action.

대용량 멀티미디어 데이터의 내용-기반 검색을 위한 근사 k-최근접 데이터 탐색 알고리즘 (Approximate k-Nearest Neighbor Search Algorithms for Content-Based Retrieval of Multimedia Data)

  • 송광택;심춘보;장재우
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (1)
    • /
    • pp.256-258
    • /
    • 1998
  • 대용량의 멀티미디어 자료를 기반으로 하는 내용-기반 멀티미디어 검색 시스템에서 k-최근접 탐색 질의는 사용자의 매우 중요한 검색 질의 중에 하나이다. 하지만, 방대한 양의 멀티미디어 데이터베이스를 기반으로하는 경우에는 적중 에러 없는 정확(exact) k-최근접 데이터 탐색을 위해서 상당히 많은 디스크 접근 횟수가 요구된다. 본 논문에서는 X-트리에서의 정확 k-최근접 탐색 질의를 개선하고, 또한 사용자의 빠른 검색 성능을 위해 다소의 적중 에러는 허용한다 하더라도 디스크 접근 횟수를 줄이는 근사(approximate) k-최근접 탐색 알고리즘을 제안한다.