• Title/Summary/Keyword: Near-surface railway system

Search Result 10, Processing Time 0.01 seconds

Preliminary Hazard Analysis for Near Surface Transit Signal System (저심도 도시철도 신호시스템의 사전 위험원 분석 연구)

  • Cho, Bong-Kwan;Park, Ki-Jun;Lim, Sok-Woo;Cha, Gi-Ho;Oh, Kwi-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.3
    • /
    • pp.97-103
    • /
    • 2015
  • To achieve the safety and reliability, RAMS activity for a railway signal system of Near Surface Transit is studied. In this paper, preliminary hazard analysis in RAMS activities is studied for the railway signal system of Near Surface Transit. Preliminary hazard analysis is done through automatic train protection, automatic train operation and automatic train supervision. The hazards are defined, then causes and consequence for each hazard are defined. The total 75 preliminary hazards are classified. For high severity hazards are changed to acceptable level by upgrading of system requirement specification.

Development of a trench shield machine for the near-surface railway construction (저심도 철도 건설을 위한 트렌치 쉴드 장비 개발연구)

  • Lee, So-Oh;Sagong, Myung;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.175-187
    • /
    • 2015
  • In this paper, the development of trench shield machine for near-surface railway construction were presented. The Near-surface railway can be constructed by cut and cover construction method, because it is installed at the depth of 5~7 m below roads. The cut and cover construction method mostly use temporary supports. The limitation of the cut and cover method is high installation cost and long construction period. To overcome these disadvantages, development of the trench shield machine is proposed and expected to shorten the construction time and cost of near-surface railway system. The sliding retaining wall of trench shield equipment replaces the role of temporary support (solider piles and lagging) and excavator equiped to the bottom front of the machine shorten the excavation time. This paper deals with design of the bit attached to the excavator and required capacity of the motor.

Laboratory Experimental Test of the Applicability of a Trench Shield Machine for Open-cut Excavation Technology (개착 시공을 위한 트렌치 쉴드장비의 적용성 평가를 위한 실내실험)

  • Lee, Young-Min;Sagong, Myung;Kim, Cheol-Han;Song, Seung-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.213-223
    • /
    • 2016
  • Traffic jams occur frequently due to the dense populations of cities. Accordingly, the discomfort of citizens has increased. In order to minimize traffic inconveniences, various public transportation facilities have been suggested. In this paper, for the economical construction of a near-surface railway system, the design of a trench shield is developed and a review of its applicability is done by creating and testing trench shield equipment on a small scale. The trench shield consists of an excavation part, a shield part and an advancement part. To examine the applicability of the trench shield, a laboratory test is carried out. The results of the laboratory test confirm the possibility of reducing the construction time at open-cut construction sites through the excavation of the trench shield. Although the laboratory test is an indoor and relatively small-scale experiment, it is considered to be possible to secure a construction speed of 3m/day when the trench shield equipment is used.

A Study on Fatigue Crack Propagation of Rail Steel under Constant and Mixed Mode Variable Amplitude Loadings

  • Kim, Chul-Su;Chung, Kwang-Woo
    • International Journal of Railway
    • /
    • v.5 no.2
    • /
    • pp.71-76
    • /
    • 2012
  • Recently, axle load, operating speed and traffic density on railroads have had a tendency to increase and thereby cause additional pressure applied on used track. These operating conditions frequently result in service failure due to wear caused by wheel-rail contact and fatigue damage under cyclic loading. Among rail defects, the transverse crack, which has been the most dangerous type of fatigue damages, is developed from the subsurface crack near the rail running face and grows perpendicular to the rail surface. Therefore, it is necessary to investigate systematically the growth behavior of transverse crack for rail steel under mixed mode. In this study, the fatigue crack growth behavior of the transverse crack in rail steel was experimentally investigated under mixed-mode variable amplitude loadings.

Control of the Lateral Displacement Restoring Force of IRWs for Sharp Curved Driving

  • Ahn, Hanwoong;Lee, Hyungwoo;Go, Sungchul;Cho, Yonho;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.1042-1048
    • /
    • 2016
  • This paper presents a lateral displacement restoring force control for the independently rotating wheelsets (IRWs) of shallow-depth subway systems. In the case of the near surface transit, which has recently been introduced, sharp curved driving performance is required for the city center service. It is possible to decrease the curve radius and to improve the performance of the straight running with the individual torque control. Therefore, the individual torque control performance of the motor is the most important point of the near surface transit. This paper deals with a lateral displacement restoring force control for sharp curved driving. The validity and usefulness of the proposed control algorithm is verified by experimental results using a small-scale bogie system.

Review on the Allowable Sleeper Spacing at a Bridge Expansion Joint (교량 신축부 허용 침목간격 검토)

  • Lee, Ui-Jae;Bae, Sang-Hwan;Lee, Ho-Ryong;Choi, Jin-Yu
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1248-1253
    • /
    • 2011
  • It is increasing construction of long span railway bridge with concrete track system for speed up of railway and efficient maintenance of track. As the sleeper of the concrete track system layed on a bridge is fixed on deck of the bridge, the displacement of the sleeper and deck is same. Therefore, the spacing between two sleeper installed at the end of the adjacent deck near the expansion joint of bridge becomes vary according to the longitudinal expansion of a deck by temperature change. By the way, if the spacing of sleepers become increase excessively, it causes large bending stress of in a rail, and it can leads failure or reduction of fatigue life of the rail. Further more, the excessive displacement of the rail may induce decrease ride comfort as well as corrugation of rail surface. Therefore, it is required to determine the allowable maximum sleeper spacing to prevent such problems. For the purpose, investigation on the influence factor on sleeper spacing for straight track was carried out. Variation of bending moment in a rail, wheel force, and the ratio of primary and secondary deflection of the rail according to sleeper spacing was investigated, and, as a result, the maximum allowable sleeper spacing at the bridge expansion joint was suggested.

  • PDF

Evaluation of Rail pad Stiffness Considering Stress of Rail (레일응력을 고려한 레일패드강성 결정)

  • Park, Dae-Geun;Kim, Jae-Hak;Son, Gi-Jun;Kim, Han-Jong
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.419-431
    • /
    • 2007
  • The track and rail surface geometry is of prime importance on the requirement for track dynamic stiffness, particularly for the speed of 350 km/h, for which both the requirement for fatigue and tensile strength limits require a lower stiffness than 100 kN/mm, which is near the value for ballasted track. However, the track quality has been considered as being the same for 350 km/h as that for 300 km/h, and based on ballasted track, and the track geometry may be kept in better condition with a slab track(probably more similar to the medium quality track geometry of ballasted track). In conclusion, under the condition that the track geometry quality provided by the concrete slab system is fairly good, and that the required maintenance is applied to the rail surface, there would be no safety risk if the fastening system point stiffness reaches 160 kN/mm for 300 km/h operation, and 110 N/mm at 350 km/h.

  • PDF

Performance Test of Corner Rigid Joint for Modular Structure using Channel and Coupler (채널과 커플러를 사용한 모듈식 구조체 우각부 연결구조의 성능검증 실험)

  • Lee, Jun-Kyoung;Lee, Jong-Soon;Lee, Sung-Hyung;Kim, Hee-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2255-2262
    • /
    • 2015
  • Recent study about near-surface is proposed to overcome non-economic of underground railway and to reduce people's complaints of ground elevated railway. In this report, precast modular structure system replacing temporary facilities is applied to ensure the construction ability and economic feasibility. To verify the performance of connection joint between permanent structural wall and upper slab, loading test is carried out. As a result of the test, wall replacing temporary structure to slab connection is possible to transfer bending moment. By 30% increase of bending resistant performance for connection joint using coupler, coupler connection joint is more advantageous to resist bending moment compared to channel connection.

A Study for the Development of the Reliability/Availability Management System of the Urban Transit Vehicles (I) (도시철도차량 신뢰도/가용도 관리시스템 개발에 관한 연구 (I))

  • Park, Kee-Jun;Chung, Jong Duk
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.3
    • /
    • pp.163-168
    • /
    • 2013
  • The maintenance of an urban transit vehicle accounts for 60-70% of total costs over its entire life cycle, so it is critical to reduce maintenance costs and extend the life times of urban transit EMUs (electric multiple units) through research. For these researches, the reliability and availability data management system was constructed through the case study of several industries in the domestic and international in the field of reliability centered maintenance system. And we created a system to manage reliability and availability data for use in urban-EMU maintenance. In this work, we identified the major functions needed to successfully develop the system. Here we report the successful development of a reliability and availability data management system for maintenance of urban transit vehicles.

A Performance Evaluation of Concrete for Low-carbon Eco-friendly PC Box for Near-surface Transit System (저심도 철도시스템 구축을 위한 저탄소 친환경 PC 박스용 콘크리트의 성능 평가)

  • Koh, Tae-Hoon;Ha, Min-Kook;Jung, Ho-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3587-3595
    • /
    • 2015
  • Low-carbon eco-friendly precast concrete (PC) box structure has been recently was developed as an low-cost infrastructure of near-surface transit system. The concrete of PC box was manufactured by industrial byproducts such as ground granulated blast furnace (GGBF) slag, flyash and rapid-cooling electric arc furnace (EAF) oxidizing slag, its mechanical property and durability were estimated in this study. Based on the mechanical and durability tests, it is found that low-carbon eco-friendly concrete shows high initial compressive strength, more than 90% of design strength (35MPa), and high resistance to salt-attack, chemical- attack and freeze-thaw. Therefore, low-carbon eco-friendly PC box concrete technology is expected to contribute to the railway with low environmental impact.