• Title/Summary/Keyword: Near-real time

Search Result 656, Processing Time 0.024 seconds

Identification of Japanese Black Cattle by the Faces for Precision Livestock Farming (흑소의 얼굴을 이용한 개체인식)

  • 김현태;지전선랑;서률귀구;이인복
    • Journal of Biosystems Engineering
    • /
    • v.29 no.4
    • /
    • pp.341-346
    • /
    • 2004
  • Recent livestock people concern not only increase of production, but also superior quality of animal-breeding environment. So far, the optimization of the breeding and air environment has been focused on the production increase. In the very near future, the optimization will be emphasized on the environment for the animal welfare and health. Especially, cattle farming demands the precision livestock farming and special attention has to be given to the management of feeding, animal health and fertility. The management of individual animal is the first step for precision livestock farming and animal welfare, and recognizing each individual is important for that. Though electronic identification of a cattle such as RFID(Radio Frequency Identification) has many advantages, RFID implementations practically involve several problems such as the reading speed and distance. In that sense, computer vision might be more effective than RFID for the identification of an individual animal. The researches on the identification of cattle via image processing were mostly performed with the cows having black-white patterns of the Holstein. But, the native Korean and Japanese cattle do not have any definite pattern on the body. The purpose of this research is to identify the Japanese black cattle that does not have a body pattern using computer vision technology and neural network algorithm. Twelve heads of Japanese black cattle have been tested to verify the proposed scheme. The values of input parameters were specified and then computed using the face images of cattle. The images of cattle faces were trained using associate neural network algorithm, and the algorithm was verified by the face images that were transformed using brightness, distortion, and noise factors. As a result, there was difference due to transform ratio of the brightness, distortion, and noise. And, the proposed algorithm could identify 100% in the range from -3 to +3 degrees of the brightness, from -2 to +4 degrees of the distortion, and from 0% to 60% of the noise transformed images. It is concluded that our system can not be applied in real time recognition of the moving cows, but can be used for the cattle being at a standstill.

Introduction of Acquisition System, Processing System and Distributing Service for Geostationary Ocean Color Imager (GOCI) Data (정지궤도 해색탑재체(GOCI) 데이터의 수신.처리 시스템과 배포 서비스)

  • Yang, Chan-Su;Bae, Sang-Soo;Han, Hee-Jeong;Ahn, Yu-Hwan;Ryu, Joo-Hyung;Han, Tai-Hyun;Yoo, Hong-Rhyong
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.263-275
    • /
    • 2010
  • KOSC(Korea Ocean Satellite Center), the primary operational organization for GOCI(Geostationary Ocean Color Imager), was established in KORDI(Korea Ocean Research & Development Institute). For a stable distribution service of GOCI data, various systems were installed at KOSC as follows: GOCI Data Acquisition System, Image Pre-processing System, GOCI Data Processing System, GOCI Data Distribution System, Data Management System, Total Management & Control System and External Data Exchange System. KOSC distributes the GOCI data 8 times to user at 1-hour intervals during the daytime in near-real time according to the distribution policy. Finally, we introduce the KOSC website for users to search, request and download GOCI data.

The Impact of Spatio-temporal Resolution of GEO-KOMPSAT-2A Rapid Scan Imagery on the Retrieval of Mesoscale Atmospheric Motion Vector (천리안위성 2A호 고속 관측 영상의 시·공간 해상도가 중규모 대기운동벡터 산출에 미치는 영향 분석)

  • Kim, Hee-Ae;Chung, Sung-Rae;Oh, Soo Min;Lee, Byung-Il;Shin, In-Chul
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.885-901
    • /
    • 2021
  • This paper illustratesthe impact of the temporal gap between satellite images and targetsize in mesoscale atmospheric motion vector (AMV) algorithm. A test has been performed using GEO-KOMPSAT-2A (GK2A) rapid-scan data sets with a temporal gap varying between 2 and 10 minutes and a targetsize between 8×8 and 40×40. Resultsshow the variation of the number of AMVs produced, mean AMV speed, and validation scores as a function of temporal gap and target size. As a results, it was confirmed that the change in the number of vectors and the normalized root-mean squared vector difference (NRMSVD) became more pronounced when smaller targets are used. In addition, it was advantageous to use shorter temporal gap and smaller target size for the AMV calculation in the lower layer, where the average speed is low and the spatio-temporal scale of atmospheric phenomena is small. The temporal gap and the targetsize are closely related to the spatial and temporalscale of the atmospheric circulation to be observed with AMVs. Thus, selecting the target size and temporal gap for an optimum calculation of AMVsrequires considering them. This paper recommendsthat the optimized configuration to be used operationally for the near-real time analysis of mesoscale meteorological phenomena is 4-min temporal gap and 16×16 pixel target size, respectively.

A Development for Sea Surface Salinity Algorithm Using GOCI in the East China Sea (GOCI를 이용한 동중국해 표층 염분 산출 알고리즘 개발)

  • Kim, Dae-Won;Kim, So-Hyun;Jo, Young-Heon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1307-1315
    • /
    • 2021
  • The Changjiang Diluted Water (CDW) spreads over the East China Sea every summer and significantly affects the sea surface salinity changes in the seas around Jeju Island and the southern coast of Korea peninsula. Sometimes its effect extends to the eastern coast of Korea peninsula through the Korea Strait. Specifically, the CDW has a significant impact on marine physics and ecology and causes damage to fisheries and aquaculture. However, due to the limited field surveys, continuous observation of the CDW in the East China Sea is practically difficult. Many studies have been conducted using satellite measurements to monitor CDW distribution in near-real time. In this study, an algorithm for estimating Sea Surface Salinity (SSS) in the East China Sea was developed using the Geostationary Ocean Color Imager (GOCI). The Multilayer Perceptron Neural Network (MPNN) method was employed for developing an algorithm, and Soil Moisture Active Passive (SMAP) SSS data was selected for the output. In the previous study, an algorithm for estimating SSS using GOCI was trained by 2016 observation data. By comparison, the train data period was extended from 2015 to 2020 to improve the algorithm performance. The validation results with the National Institute of Fisheries Science (NIFS) serial oceanographic observation data from 2011 to 2019 show 0.61 of coefficient of determination (R2) and 1.08 psu of Root Mean Square Errors (RMSE). This study was carried out to develop an algorithm for monitoring the surface salinity of the East China Sea using GOCI and is expected to contribute to the development of the algorithm for estimating SSS by using GOCI-II.

Development of Landslide Detection Algorithm Using Fully Polarimetric ALOS-2 SAR Data (Fully-Polarimetric ALOS-2 자료를 이용한 산사태 탐지 알고리즘 개발)

  • Kim, Minhwa;Cho, KeunHoo;Park, Sang-Eun;Cho, Jae-Hyoung;Moon, Hyoi;Han, Seung-hoon
    • Economic and Environmental Geology
    • /
    • v.52 no.4
    • /
    • pp.313-322
    • /
    • 2019
  • SAR (Synthetic Aperture Radar) remote sensing data is a very useful tool for near-real-time identification of landslide affected areas that can occur over a large area due to heavy rains or typhoons. This study aims to develop an effective algorithm for automatically delineating landslide areas from the polarimetric SAR data acquired after the landslide event. To detect landslides from SAR observations, reduction of the speckle effects in the estimation of polarimetric SAR parameters and the orthorectification of geometric distortions on sloping terrain are essential processing steps. Based on the experimental analysis, it was found that the IDAN filter can provide a better estimation of the polarimetric parameters. In addition, it was appropriate to apply orthorectification process after estimating polarimetric parameters in the slant range domain. Furthermore, it was found that the polarimetric entropy is the most appropriate parameters among various polarimetric parameters. Based on those analyses, we proposed an automatic landslide detection algorithm using the histogram thresholding of the polarimetric parameters with the aid of terrain slope information. The landslide detection algorithm was applied to the ALOS-2 PALSAR-2 data which observed landslide areas in Japan triggered by Typhoon in September 2011. Experimental results showed that the landslide areas were successfully identified by using the proposed algorithm with a detection rate of about 82% and a false alarm rate of about 3%.

A Study on the Use of Grid-based Spatial Information for Response to Typhoons (태풍대응을 위한 격자 기반 공간정보 활용방안 연구)

  • Hwang, Byungju;Lee, Junwoo;Kim, Dongeun;Kim, Jangwook
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.1
    • /
    • pp.25-38
    • /
    • 2021
  • Purpose: To reduce the damage caused by continuously occurring typhoons, we proposed a standardized grid so that it could be actively utilized in the prevention and preparation stage of typhoon response. We established grid-based convergence information on the typhoon risk area so that we showed the effectiveness of information used in disaster response. Method: To generate convergent information on typhoon hazard areas that can be useful in responding to typhoon situation, we used various types of data such as vector and raster to establish typhoon hazard area small grid-based information. A standardized grid model was applied for compatibility with already produced information and for compatibility of grid information generated by each local government. Result: By applying the grid system of National branch license plates, a grid of typhoon risk areas in Seoul was constructed that can be usefully used when responding to typhoon situations. The grid system of National branch license plates defines the grid size of a multi-dimensional hierarchical structure. And a grid of typhoon risk areas in Seoul was constructed using grids of 100m and 1,000m. Conclusion: Using real-time 5km resolution grid based weather information provided by Korea Meteorological Administration, in the future, it is possible to derive near-future typhoon hazard areas according to typhoon travel route prediction. In addition, the national branch number grid system can be expanded to global grid systems for global response to various disasters.

The Impact of Socio-Scientific Issue Debate about Local Environmental Problem on High School Students' Environmental Perception Change (지역환경문제에 관한 사회과학쟁점 토론이 고등학교 학생들의 환경인식 변화에 미치는 영향)

  • Yoo, Ye-jin;Nam, Younkyeong
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.13 no.3
    • /
    • pp.284-296
    • /
    • 2020
  • This study investigates the effect of SSI debate on first-year high school student's opinions about environmental issue, their judgment grounds, and solutions to regional environmental problems. The SSI debate was about white heron habitats near the village where students live. As the main data of the study, environmental perception questionnaires, and students' workbook including open-ended questions were collected before and after class. The environmental perception questionnaire was analyzed by descriptive statistics, and the response of the open-ended questions was analyzed through inductive qualitative research methods. First, the results of this study shows that the SSI debate has a statistically significant impact on students' environmental attitude. Second, a majority of students agreed on the idea that villagers should drive the birds out of town and they did not change their after the discussion class. However, after the discussion class, students' solutions about the issue were changed in a way that more short-term, feasible, concrete, and less time-consuming solutions to the problem. Based on the results of this study, this study implies that SSI issue debate using local problem should be used more often in science classroom so the students recognize local SSI and improve real world problem solving skills.

Past, Present and Future of Geospatial Scheme based on Topo-Climatic Model and Digital Climate Map (소기후모형과 전자기후도를 기반으로 한 지리공간 도식의 과거, 현재 그리고 미래)

  • Kim, Dae-Jun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.268-279
    • /
    • 2021
  • The geospatial schemes based on topo-climatology have been developed to produce digital climate maps at a site-specific scale. Their development processes are reviewed here to derive the needs for new schemes in the future. Agricultural and forestry villages in Korea are characterized by complexity and diversity in topography, which results in considerably large spatial variations in weather and climate over a small area. Hence, the data collected at a mesoscale through the Automated Synoptic Observing System (ASOS) operated by the Korea Meteorological Administration (KMA) are of limited use. The geospatial schemes have been developed to estimate climate conditions at a local scale, e.g., 30 m, lowering the barriers to deal with the processes associated with production in agricultural and forestry industries. Rapid enhancement of computing technologies allows for near real-time production of climate information at a high-resolution even in small catchment areas and the application to future climate change scenarios. Recent establishment of the early warning service for agricultural weather disasters can provide growth progress and disaster forecasts for cultivated crops on a farm basis. The early warning system is being expanded worldwide, requiring further advancement in geospatial schemes and digital climate mapping.

Regression Analysis-based Model Equation Predicting the Concentration of Phytoncide (Monoterpenes) - Focusing on Suri Hill in Chuncheon - (피톤치드(모노테르펜) 농도 예측을 위한 회귀분석 기반 모델식 -춘천 수리봉을 중심으로-)

  • Lee, Seog-Jong;Kim, Byoung-Ug;Hong, Young-Kyun;Lee, Yeong-Seob;Go, Young-Hun;Yang, Seung-Pyo;Hyun, Geun-Woo;Yi, Geon-Ho;Kim, Jea-Chul;Kim, Dae-Yeoal
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.6
    • /
    • pp.548-557
    • /
    • 2021
  • Background: Due to the emergence of new diseases such as COVID-19, an increasing number of people are struggling with stress and depression. Interest is growing in forest-based recreation for physical and mental relief. Objectives: A prediction model equation using meteorological factors and data was developed to predict the quantities of medicinal substances generated in forests (monoterpenes) in real-time. Methods: The concentration of phytoncide and meteorological factors in the forests near Chuncheon in South Korea were measured for nearly two years. Meteorological factors affecting the observation data were acquired through a multiple regression analysis. A model equation was developed by applying a linear regression equation with the main factors. Results: The linear regression analysis revealed a high explanatory power for the coefficients of determination of temperature and humidity in the coniferous forest (R2=0.7028 and R2=0.5859). With a temperature increase of 1℃, the phytoncide concentration increased by 31.7 ng/Sm3. A humidity increase of 1% led to an increase in the coniferous forest by 21.9 ng/Sm3. In the deciduous forest, the coefficients of determination of temperature and humidity had approximately 60% explanatory power (R2=0.6611 and R2=0.5893). A temperature increase of 1℃ led to an increase of approximately 9.6 ng/Sm3, and 1% humidity resulted in a change of approximately 6.9 ng/Sm3. A prediction model equation was suggested based on such meteorological factors and related equations that showed a 30% error with statistical verification. Conclusions: Follow-up research is required to reduce the prediction error. In addition, phytoncide data for each region can be acquired by applying actual regional phytoncide data and the prediction technique proposed in this study.

Waterbody Detection Using UNet-based Sentinel-1 SAR Image: For the Seom-jin River Basin (UNet기반 Sentinel-1 SAR영상을 이용한 수체탐지: 섬진강유역 대상으로)

  • Lee, Doi;Park, Soryeon;Seo, Dongju;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.901-912
    • /
    • 2022
  • The frequency of disasters is increasing due to global climate change, and unusual heavy rains and rainy seasons are occurring in Korea. Periodic monitoring and rapid detection are important because these weather conditions can lead to drought and flooding, causing secondary damage. Although research using optical images is continuously being conducted to determine the waterbody, there is a limitation in that it is difficult to detect due to the influence of clouds in order to detect floods that accompany heavy rain. Therefore, there is a need for research using synthetic aperture radar (SAR) that can be observed regardless of day or night in all weather. In this study, using Sentinel-1 SAR images that can be collected in near-real time as open data, the UNet model among deep learning algorithms that have recently been used in various fields was applied. In previous studies, waterbody detection studies using SAR images and deep learning algorithms are being conducted, but only a small number of studies have been conducted in Korea. In this study, to determine the applicability of deep learning of SAR images, UNet and the existing algorithm thresholding method were compared, and five indices and Sentinel-2 normalized difference water index (NDWI) were evaluated. As a result of evaluating the accuracy with intersect of union (IoU), it was confirmed that UNet has high accuracy with 0.894 for UNet and 0.699 for threshold method. Through this study, the applicability of deep learning-based SAR images was confirmed, and if high-resolution SAR images and deep learning algorithms are applied, it is expected that periodic and accurate waterbody change detection will be possible in Korea.