• 제목/요약/키워드: Near-infrared Light

검색결과 255건 처리시간 0.022초

Diagnoses of Abiotic Stress in Cucumber Plant with Non-destructive Physiological Instruments

  • Sung, Jae Hoo;Suh, Sang Ryong;Chung, Gap Chae;Lee, K.H.
    • Agricultural and Biosystems Engineering
    • /
    • 제2권2호
    • /
    • pp.75-80
    • /
    • 2001
  • This paper describes method to diagnose abiotic stresses such ad low root temperature, low light intensity and high salinity in cucumber plants with several physiological instruments. The stresses could be detected by measuring and analyzing the differences in chlorophyll content, temperature difference between leaf and atmosphere and light absorptance at wavelengths of 480, 560, 710, 1420 and 1650nm. It was concluded that the stresses could be first diagnosed from the 3rd to 10th day after treatment and the overall accuracy of diagnosis was estimated between 25 and 75%. near-infrared spectrometer showed better and earlier detection than the other instruments investigated.

  • PDF

신체계측을 이용한 각종 체지방량 추정식의 타당성 평가 (Validity of Various Anthropometric Equations for the Estimation of Relative Body Fat)

  • 김은경
    • Journal of Nutrition and Health
    • /
    • 제23권2호
    • /
    • pp.93-107
    • /
    • 1990
  • The purposes of this investigation were to determine the validity of various methods (available anthropometric equations and near-infrared light interactance) for estimating body fat and to develop multiple regression equations for the prediction of body fat. Thirty-eight healthy males(age: 20.87$\pm$7.17 yrs) and 12 females(19.58$\pm$2.19 yrs) underwent hydrostatic weighing to determine body fat. Anthropometric measurements were taken of height, weight, nin skinfolds and thirteen circumferences. The results obtained are summarized as follows: 1) Relative body fat determined by underwater weighing was 12.08$\pm$5.21% for the males and 17.97$\pm$5.75% for the females. 2) Circumference and skin fold that had the highest correlation with the body fat were waist girth in males and females(r=0.60, r=0.96, respectively), and subscapular in males(r=0.68) and triceps in females(r=0.96). 3) Corss-validation of 18 selected equations on males revealed total errors ranging from 3.76% to 5.06%. Among these equations, M3(Pollock et al.) demonstrated the least total error. Total error of estimation by near-infrared(NIR) was less than that of available anthropometric measurement equations. The results of the cross-validation of 12 equations on females revealed that F3(Sloan et al.) was clearly superior in accuracy of prediction. 4) Correlational analyses showed that estimation of body fat by NIR measurement seemed to be more closely associated with body fat determined by underwater weighing in women than men, in older subjects than younger ones, and in fatter subjects than leaner ones.

  • PDF

Consideration of a Circumsolar Dust Ring in Resonant Lock with the Venus

  • Jeong, Jin-Hoon;Ishiguro, Masateru
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.54-54
    • /
    • 2010
  • Interplanetary space is filled with dust particles originating mainly from comets and asteroids. Such interplanetary dust particles lose their angular momentum by olar radiation pressure, causing the dust grains to slowly spiral inward Poynting-Robertson effect). As dust particles move into the Sun under the influence of Poynting-Robertson drag force, they may encounter regions of resonance just outside planetary orbits, and be trapped by their gravities, forming the density enhancements in the dust cloud (circumsolar resonance ring). The circumsolar resonance ring near the Earth orbit was detected in the zodiacal cloud through observations of infrared space telescopes. So far, there is no observational evidence other than Earth because of the detection difficulty from Earth bounded orbit. A Venus Climate Orbiter, AKATSUKI, will provide a unique opportunity to study the Venusian resonance ring. It equips a near-infrared camera for the observations of the zodiacal light during the cruising phase. Here we consider whether Venus gravity produces the circumsolar resonance ring around the orbit. We thus perform the dynamical simulation of micron-sized dust particles released outside the Earth orbit. We consider solar radiation pressure, solar gravity, and planetary perturbations. It is found that about 40 % of the dust particles passing through the Venus orbit are trapped by the gravity. Based on the simulation, we estimate the brightness of the Venusian resonance ring from AKATSUKI's locations.

  • PDF

DEVELOPMENT OF AN INTEGRATED GRADER FOR APPLES

  • Park, K. H.;Lee, K. J.;Park, D. S.;Y. S. Han
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.III
    • /
    • pp.513-520
    • /
    • 2000
  • An integrated grader which measures soluble solid content, color and weight of fresh apples was developed by NAMRI. The prototype grader consists of the near infrared spectroscopy and machine vision system. Image processing system and an algorithm to evaluate color were developed to speed up the color evaluation of apples. To avoid the light glare and specular reflection, an half-spherical illumination chamber was designed and fabricated to detect the color images of spherical-shaped apples more precisely. A color revision model based on neural network was developed. Near-infrared(NIR) spectroscopy system using NIR reflectance method developed by Lee et al(1998) of NAMRI was used to evaluate soluble solid content. In order to observe the performance of the grader, tests were conducted on conditions that there are 3 classes in weight sorting, 4 classes in combination of color and soluble solid content, and thus 12 classes in combined sorting. The average accuracy in weight, color and soluble solid content is more than about 90 % with the capacity of 3 fruits per second.

  • PDF

THE DIFFUSE NEAR-INFRARED BACKGROUND SPECTRUM FROM AKARI

  • Kohji, Tsumura;Toshio, Matsumoto;Shuji, Matsuura;Itsuki, Sakon;Takehiko, Wada
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.321-326
    • /
    • 2017
  • We analyzed spectral data of the astrophysical diffuse emission obtained with the low-resolution spectroscopy mode on the AKARI InfraRed Camera (IRC) in the $1.8-5.3{\mu}m$ wavelength region. Advanced reduction methods specialized for slit spectroscopy of diffuse sky spectra have been developed, and a catalog of 278 spectra of the diffuse sky covering a wide range of Galactic and ecliptic latitudes was constructed. Using this catalog, two other major foreground components, the zodiacal light (ZL) and the diffuse Galactic light (DGL), were separated and subtracted by taking correlations with ZL brightness estimated by the DIRBE ZL model and with the $100{\mu}m$ dust thermal emission, respectively. The isotropic emission was interpreted as the extragalactic background light (EBL), which shows significant excess over the integrated light of galaxies at <$4{\mu}m$.

장파장 근적외선 조명 및 밴드 패스 필터 기반 이동형 홍채 인식 시스템 및 성능 평가 (Mobile Iris Recognition System Based on the Near Infrared Light Illuminator of Long Wavelength and Band Pass Filter and Performance Evaluations)

  • 조소라;남기표;정대식;신광용;박강령;신재호
    • 한국멀티미디어학회논문지
    • /
    • 제14권9호
    • /
    • pp.1125-1137
    • /
    • 2011
  • 최근, 휴대성과 이동성이 뛰어난 모바일 단말기 환경에 홍채 인식 기술을 도입하여 신원을 확인하는 연구가 진행 되었는데, 이러한 모바일 홍채 인식 시스템은 취득된 홍채 영상 품질에 따라 인식률이 좌우된다. 홍채 영상은 취득 시 조명환경에 영향을 많이 받게 되는데, 기존의 시스템은 태양광이 없는 실내에서는 높은 인식률을 보이나, 실외 태양광 환경에서는 외부태양광이 홍채 영역에 투사되어 입력 영상 내에서 홍채 패턴의 그레이 레벨 변화, 고스트(Ghost region) 및 속눈썹 그림자(Eyelash shading region) 발생 등의 요인으로 인식 성능 저하를 초래하는 문제가 있었다. 이를 해결하기 위하여, 본 연구에서는 850nm 근적외선 조명과 850nm 대역 밴드 패스 필터를 장착한 홍채 카메라 시스템을 제안한다. 성능 평가를 위해 기존의 홍채 인식시스템과 제안하는 홍채 인식 시스템을 사용하여 실내 및 실외 태양광 환경에서 취득한 홍채 영상으로부터 홍채코드를 추출한 후 타인 수락률(False Acceptance Rate), 본인 거부율 (False Rejection Rate)을 통한 균등 에러율(EER, Equal Error Rate)을 측정하였다. 실험 결과 기존의 시스템 보다 제안하는 시스템의 EER이 실내 정면 조명일 때 약 0.96%, 실외 정면 조명일 때 약 4.94%, 실외 측면 조명일 때 약 9.24%, 실외 후면 조명일 때 약 7% 낮아지는 개선된 성능을 보였다.

High-sensitivity NIR Sensing with Stacked Photodiode Architecture

  • Hyunjoon Sung;Yunkyung Kim
    • Current Optics and Photonics
    • /
    • 제7권2호
    • /
    • pp.200-206
    • /
    • 2023
  • Near-infrared (NIR) sensing technology using CMOS image sensors is used in many applications, including automobiles, biological inspection, surveillance, and mobile devices. An intuitive way to improve NIR sensitivity is to thicken the light absorption layer (silicon). However, thickened silicon lacks NIR sensitivity and has other disadvantages, such as diminished optical performance (e.g. crosstalk) and difficulty in processing. In this paper, a pixel structure for NIR sensing using a stacked CMOS image sensor is introduced. There are two photodetection layers, a conventional layer and a bottom photodiode, in the stacked CMOS image sensor. The bottom photodiode is used as the NIR absorption layer. Therefore, the suggested pixel structure does not change the thickness of the conventional photodiode. To verify the suggested pixel structure, sensitivity was simulated using an optical simulator. As a result, the sensitivity was improved by a maximum of 130% and 160% at wavelengths of 850 nm and 940 nm, respectively, with a pixel size of 1.2 ㎛. Therefore, the proposed pixel structure is useful for NIR sensing without thickening the silicon.

FTIR spectroscopy of the two-photon product of sensory rhodopsin I

  • Sasaki, Jun;Kannaka, Masato;Kandori, Hideki;Tokunaga, Fumio
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.534-536
    • /
    • 2002
  • A halophilic archaeon, Halobacterium salinarum, exhibits phototactic behaviors, by which the organism is guided to red-orange light and evades shorter wavelengths of light. The phototaxis is mediated by two retinal proteins, sensory rhodopsin I and II (SRI and SRII), whose structures are analogous to the cognate protein bacteriorhodopsin, a light-driven proton pump. SRI mediates both attractant and repellent swimming behaviors to orange light and near- UV light, respectively. The two different signaling through the single photoreceptor have been ascribed to the presence of two active structures of SRI (S$\_$373/ and P$\_$520), which are produced upon orange light illumination of SRI and upon subsequent near-UV illumination of S$\_$373/, respectively. In the present study, we have measured the difference FTIR spectra of S$\_$373/ and P$\_$520/ states. In P$\_$520/, the isomeric structure of the chromophore is assignable to all-trans, and the Schiff base of the chromophore is protonated with concomitant deprotonation of Asp76, a combination which allows for the formation of a salt bridge between them. It was suggested that the way of interaction between the Schiff base and the counterion, which is different among SRI$\_$587/, S$\_$373/ and P$\_$520/ and which has been shown to drive the conformational changes in the cognate protein, bacteriorhodopsin, is the key to controlling conformational changes for the attractant and the repellent signaling by SRI.

  • PDF

지상 원격탐사의 농업적 활용 (Agricultural Application of Ground Remote Sensing)

  • 홍순달;김재정
    • 한국토양비료학회지
    • /
    • 제36권2호
    • /
    • pp.92-103
    • /
    • 2003
  • Research and technological advances in the field of remote sensing have greatly enhanced the ability to detect and quantify physical and biological stresses that affect the productivity of agricultural crops. Reflectance in specific visible and near-infrared regions of the electromagnetic spectrum have proved useful in detection of nutrient deficiencies. Especially crop canopy sensors as a ground remote sensing measure the amount of light reflected from nearby surfaces such as leaf tissue or soil and is in contrast to aircraft or satellite platforms that generate photographs or various types of digital images. Multi-spectral vegetation indices derived from crop canopy reflectance in relatively wide wave band can be used to monitor the growth response of plants in relation to environmental factors. The normalized difference vegetation index (NDVI), where NDVI = (NIR-Red)/(NIR+Red), was originally proposed as a means of estimating green biomass. The basis of this relationship is the strong absorption (low reflectance) of red light by chlorophyll and low absorption (high reflectance and transmittance) in the near infrared (NIR) by green leaves. Thereafter many researchers have proposed the other indices for assessing crop vegetation due to confounding soil background effects in the measurement. The green normalized difference vegetation index (GNDVI), where the green band is substituted for the red band in the NDVI equation, was proved to be more useful for assessing canopy variation in green crop biomass related to nitrogen fertility in soils. Consequently ground remote sensing as a non destructive real-time assessment of nitrogen status in plant was thought to be useful tool for site specific crop nitrogen management providing both spatial and temporal information.

Photoacoustic imaging of occlusal incipient caries in the visible and near-infrared range

  • da Silva, Evair Josino;de Miranda, Erica Muniz;de Oliveira Mota, Claudia Cristina Brainer;Das, Avishek;Gomes, Anderson Stevens Leonidas
    • Imaging Science in Dentistry
    • /
    • 제51권2호
    • /
    • pp.107-115
    • /
    • 2021
  • Purpose: This study aimed to demonstrate the presence of dental caries through a photoacoustic imaging system with visible and near-infrared wavelengths, highlighting the differences between the 2 spectral regions. The depth at which carious tissue could be detected was also verified. Materials and Methods: Fifteen permanent molars were selected and classified as being sound or having incipient or advanced caries by visual inspection, radiography, and optical coherence tomography analysis prior to photoacoustic scanning. A photoacoustic imaging system operating with a nanosecond pulsed laser as the light excitation source at either 532 nm or 1064 nm and an acoustic transducer at 5 MHz was developed, characterized, and used. En-face and lateral(depth) photoacoustic signals were detected. Results: The results confirmed the potential of the photoacoustic method to detect caries. At both wavelengths, photoacoustic imaging effectively detected incipient and advanced caries. The reconstructed photoacoustic images confirmed that a higher intensity of the photoacoustic signal could be observed in regions with lesions, while sound surfaces showed much less photoacoustic signal. Photoacoustic signals at depths up to 4 mm at both 532 nm and 1064 nm were measured. Conclusion: The results presented here are promising and corroborate that photoacoustic imaging can be applied as a diagnostic tool in caries research. New studies should focus on developing a clinical model of photoacoustic imaging applications in dentistry, including soft tissues. The use of inexpensive light-emitting diodes together with a miniaturized detector will make photoacoustic imaging systems more flexible, user-friendly, and technologically viable.