DOI QR코드

DOI QR Code

Mobile Iris Recognition System Based on the Near Infrared Light Illuminator of Long Wavelength and Band Pass Filter and Performance Evaluations

장파장 근적외선 조명 및 밴드 패스 필터 기반 이동형 홍채 인식 시스템 및 성능 평가

  • 조소라 (동국대학교 전자전기공학부) ;
  • 남기표 (동국대학교 전자전기공학부) ;
  • 정대식 (동국대학교 전자전기공학부) ;
  • 신광용 (동국대학교 전자전기공학부) ;
  • 박강령 (동국대학교 전자전기공학부) ;
  • 신재호 (동국대학교 전자전기공학부)
  • Received : 2010.10.11
  • Accepted : 2011.08.16
  • Published : 2011.09.30

Abstract

Recently, there have been previous research about the iris recognition in mobile device to increase portability, whose accuracy is affected by the quality of iris image. Iris image is affected by illumination environment during the image acquisition. The existing system has high accuracy in indoor environment. However the accuracy is degraded in outdoor environment, because the gray levels of iris patterns in image are changed, and ghost and eyelash shading regions are produced by the sunlight of various wavelengths into iris region. To overcome these problems, we propose new mobile iris camera system which uses the near-infrared (NIR) light illuminator of 850 nm and band pass filter (BPF) of 850 nm. To measure the performance of the proposed system, we compared it to the existing one with the iris images captured in indoor and outdoor sunlight environments in terms of the equal error rates (EER) based on false acceptance rate (FAR) and false rejection rate (FRR). The experimental result showed that the proposed system had the lower EERs than those of previous system by 0.96% (with frontal light in indoors), 4.94% (with frontal light in outdoor), 9.24% (with side light in outdoor), and 7% (with back light in outdoor), respectively.

최근, 휴대성과 이동성이 뛰어난 모바일 단말기 환경에 홍채 인식 기술을 도입하여 신원을 확인하는 연구가 진행 되었는데, 이러한 모바일 홍채 인식 시스템은 취득된 홍채 영상 품질에 따라 인식률이 좌우된다. 홍채 영상은 취득 시 조명환경에 영향을 많이 받게 되는데, 기존의 시스템은 태양광이 없는 실내에서는 높은 인식률을 보이나, 실외 태양광 환경에서는 외부태양광이 홍채 영역에 투사되어 입력 영상 내에서 홍채 패턴의 그레이 레벨 변화, 고스트(Ghost region) 및 속눈썹 그림자(Eyelash shading region) 발생 등의 요인으로 인식 성능 저하를 초래하는 문제가 있었다. 이를 해결하기 위하여, 본 연구에서는 850nm 근적외선 조명과 850nm 대역 밴드 패스 필터를 장착한 홍채 카메라 시스템을 제안한다. 성능 평가를 위해 기존의 홍채 인식시스템과 제안하는 홍채 인식 시스템을 사용하여 실내 및 실외 태양광 환경에서 취득한 홍채 영상으로부터 홍채코드를 추출한 후 타인 수락률(False Acceptance Rate), 본인 거부율 (False Rejection Rate)을 통한 균등 에러율(EER, Equal Error Rate)을 측정하였다. 실험 결과 기존의 시스템 보다 제안하는 시스템의 EER이 실내 정면 조명일 때 약 0.96%, 실외 정면 조명일 때 약 4.94%, 실외 측면 조명일 때 약 9.24%, 실외 후면 조명일 때 약 7% 낮아지는 개선된 성능을 보였다.

Keywords

References

  1. J. Daugman, "The Importance of Being Random: Statistical Principles of Iris Recognition," Pattern Recognition, Vol.36, Issue.2, pp. 279-291, 2003. https://doi.org/10.1016/S0031-3203(02)00030-4
  2. 남기표, 강병준, 박강령, "이동형 다중 바이오 인식 시스템 및 국방 응용에 관한 연구," 2009 국방정보 및 제어기술 학술대회, 국방대학원, 2009.
  3. 노승인, 김재희, "홍채인식기술의 현황과 응용," 한국정보과학회 논문지, 제19권, 제7호, pp. 4-13, 2001.
  4. G. Lu, J. Qi and Q. Liao, "A New Scheme of Iris Image Quality Assessment," Proceedings of the 3rd International Conference on International Information Hiding and Multimedia Signal Processing, Vol.1, pp. 147-150, 2007.
  5. http://www.irisid.com/ps/hwproducts/index.htm (accessed on 2011. 8. 1)
  6. Ho Gi Jung, Hyun Su Jo, Kang Ryoung Park, and Jaihie Kim, "Coaxial Optical Structure for Iris Recognition from a Distance," Optical Engineering, Vol.50, No.5, pp. 053201-1 - 053201-8, 2011. https://doi.org/10.1117/1.3582850
  7. http://www.sarnoff.com/products/iris-onthe- move/portal-system (accessed on 2011. 8. 1)
  8. http://www.aoptix.com/iris-recognition/ product/insight-vm (accessed on 2011. 8. 1)
  9. Sowon Yoon, Ho Gi Jung, Kang Ryoung Park, and Jaihie Kim, "Nonintrusive Iris Image Acquisition System Based on a Pan-Tilt- Zoom Camera and Light Stripe Projection," Optical Engineering, Vol.48, No.3, pp. 037202- 1-037202-15, 2009. https://doi.org/10.1117/1.3095905
  10. http://www.l1id.com/pages/530-mobile-idfor- military (accessed on 2011. 8. 1)
  11. T. Mansfield, G. Kelly, D. Chandler, and J. Kane, "Biometric Product Testing Final Report," Issue 1.0, National Physical Laboratory, 2001.
  12. P. J. Grother, E. Tabassi, G. W. Quinn, and W. J. Salamon, "IREX I: Performance of Iris Recognition Algorithms on Standard Images," NIST Interagency/Internal Report(NISTIR) - 7629, 2009. (http://www.nist.gov/manuscriptpubl ication-search.cfm?pub_id=903606 (accessed on 2011. 8. 1))
  13. P. J. Phillips, K. W. Bowyer, P. J. Flynn, X. Liu, and W. T. Scruggs, "The Iris Challenge Evaluation 2005," Proceedings of the 2nd IEEE International Conference on Biometrics: Theory, Applications and Systems, pp. 1-8, 2008.
  14. http://www.andor.com/learning/digital_ cameras/?docid=315 (accessed on 2011. 8. 1)
  15. A. Vogel, C. Dlugos, R. Nuffer, and R. Birn gruber, "Optical Properties of Human Sclera, and Their Consequences for Transscleral Laser Applications," Lasers in Surgery and Medicine, Vol.11, Issue 4, pp. 331-340, 1991. https://doi.org/10.1002/lsm.1900110404
  16. E. V. Koblova, A. N. Bashkatov, E. A. Genina, V. V. Tuchin, and V. V. Bakutkin, "Estimation of Melanin Content in Iris of Human Eye," Proc. SPIE, Vol.5688, pp. 302-311, 2005.
  17. Eui Chul Lee, Kang Ryoung Park, Mincheol Whang, and Kyungha Min, "Measuring the Degree of Eyestrain Caused by Watching LCD and PDP Devices," International Journal of Industrial Ergonomics, Vol.39, No.5, pp. 798-806, 2009. https://doi.org/10.1016/j.ergon.2009.02.008
  18. Q.-C. Tian, Q. Pan, Y.-M. Cheng, and Q.-X. Gao, "Fast Algorithm and Application of Hough Transform in Iris Segmentation," Proceedings of the International Conference on Machine Learning and Cybernatics, Vol.7, pp. 3977-3980, 2004.
  19. J. Daugman, "New Methods in Iris Recognition," IEEE Transactions on Systems, Man, and Cybernatics - Part B, Vol.37, No.5, pp. 1167-1175, 2007.
  20. Dae Sik Jeong, Jae Won Hwang, Byung Jun Kang, Kang Ryoung Park, Chee Sun Won, Dong-Kwon Park, and Jaihie Kim, "A New Iris Segmentation Method for Non-ideal Iris Images," Image and Vision Computing, Vol. 28, Issue 2, pp. 254-260, 2010. https://doi.org/10.1016/j.imavis.2009.04.001
  21. J. Daugman, "How Iris Recognition Works," IEEE Transactions on Circuits and Systems for Video Technology, Vol.14, No.1, pp. 21-30, 2004. https://doi.org/10.1109/TCSVT.2003.818350
  22. 조달호, 박강령, 이대웅, "모바일 환경에서의 홍채 인식에 적합한 홍채 및 동공 영역 추출방법," Proceedings of the 4th BERC Biometrics Workshop, 2006.
  23. H. V. Nguyen and Hakil Kim, "Robust Iris Segmentation via Simple Circular and Linear Filters," Journal of Electronic Imaging, Vol. 17, No.4, pp. 043027-1-043027-8, 2008. https://doi.org/10.1117/1.3050067
  24. 장영균, 강병준, 박강령, "홍채 인식을 위한 포물 허프 변환 기반 눈꺼풀 영역 검출 알고리즘," 대한전자공학회 논문지, 제44권 SP편 제1호, pp. 94-104, 2007.
  25. B. J. Kang and K. R. Park, "A Robust Eyelash Detection Based on Iris Focus Assessment," Pattern Recognition Letters, Vol.28, Issue 13, pp. 1630-1639, 2007. https://doi.org/10.1016/j.patrec.2007.04.004
  26. Hyun-Ae Park and Kang Ryoung Park, "Iris Recognition Based on Score Level Fusion by Using SVM," Pattern Recognition Letters, Vol.28, Issue 15, pp. 2019-2028, 2007. https://doi.org/10.1016/j.patrec.2007.05.017
  27. Gi Pyo Nam, Byung Jun Kang, and Kang Ryoung Park, "Robustness of Face Recognition to Variations of Illumination on Mobile Devices Based on SVM," KSI I Transactions on Internet and Information Systems, Vol.4, No.1, pp. 25-44, 2010.
  28. Kwang Yong Shin, Gi Pyo Nam, Dae Sik Jeong, Dalho Cho, Byung Jun Kang, Kang Ryoung Park, and Jaihie Kim, "New Iris Recognition Method for Noisy Iris Images," Pattern Recognition Letters, 2011, accepted for publication.
  29. N. K. Ratha and V. Govindaraju, Advances in Biometrics: Sensors, Algorithms and System, Springer, 2008.
  30. 신광용, 강병준, 박강령, 신재호, "다중 다층 퍼셉트론을 이용한 저해상도 홍채 영상의 고해상도 복원 연구," 멀티미디어학회 논문지, 제13권, 제 3호, pp. 438-456, 2010.

Cited by

  1. 생체인식기술 기반 개인인증수단에 따른 사용자 인식 vol.16, pp.11, 2011, https://doi.org/10.5392/jkca.2016.16.11.011