• Title/Summary/Keyword: Near-infrared Camera

Search Result 150, Processing Time 0.03 seconds

First Light Results of IGRINS Instrument Control Software

  • Lee, Hye-In;Pak, Soojong;Sim, Chae Kyung;Le, Huynh Anh N.;Jeong, Ueejeong;Chun, Moo-Young;Park, Chan;Yuk, In-Soo;Kim, Kangmin;Pavel, Michael;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.54.2-54.2
    • /
    • 2014
  • IGRINS (Immersion GRating Infrared Spectrograph) is a high spectral resolution near-infrared spectrograph that has been developed in a collaboration between the Korea Astronomy & Space Science Institute and the University of Texas at Austin. By using a silicon immersion echelle grating, the size of the fore optics is reduced by a factor of three times and we can make a more compact instrument. One exposure covers the whole of the H- and K-band spectrum with R=40,000. While the operation of and data reduction for this instrument is relatively simple compared to other grating spectrographs, we still need to operate three infrared arrays, cryostat sensors, calibration lamp units, and the telescope during astronomical observations. The IGRINS Instrument Control Software consists of a Housekeeping Package (HKP), Slit Camera Package (SCP), Data Taking Package (DTP), and Quick Look Package (QLP). The SCP will do auto guiding using a center finding algorithm. The DTP will take the echellogram images of the H and K bands, and the QLP will confirm fast processing of data. We will have a commissioning observations in 2014 March. In this poster, we present the performance of the software during the test observations.

  • PDF

The near infrared image of GRB100205A field

  • Kim, Yongjung;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.82.1-82.1
    • /
    • 2012
  • GRB100205A is a Gamma Ray Burst (GRB) which is suspected to be at redshift z=11-13 due to its very red H-K color($(H-K)_{vega}=2.1{\pm}0.5$). We observed a field centered at GRB100205A with Wide Field Camera (WFCAM) at United Kingdom Infrared Telescope (UKIRT) in Hawaii, in order to search a quasar that could be located around the GRB. The images were obtained in J, H, and K filters covering a square area of $0.78deg^2$. Our J-, H-, and K-band data reach the depths of 22.5, 22.1, and 21.0 mag (Vega) at $5{\sigma}$, respectively. Also using z-band image observed by CFHT, we find 8 candidates that have colors consistent with a quasar at z=11-13(non-detection in z-, J-band and $(H-K)_{vega}$ > 1.6). However, the shallow depths of J-, H-band are not enough to verify their true nature. Instead, we identify many red objects to be old or dusty galaxies at $z{\geq}3$. The number density of such objects appears about twice or more than that of the field of Cosmological Evolution Survey (COSMOS) and Ultra Deep Survey (UDS) of UKIRT Infrared deep sky survey (UKIDSS). On scales between 0.18' and 15' the correlation function is well described by a power law with an exponent of ${\approx}-0.9$ and this implies that those objects are like galaxies. It is interesting that many red galaxies exist in the region where the GRB was detected.

  • PDF

Mobile Iris Recognition System Based on the Near Infrared Light Illuminator of Long Wavelength and Band Pass Filter and Performance Evaluations (장파장 근적외선 조명 및 밴드 패스 필터 기반 이동형 홍채 인식 시스템 및 성능 평가)

  • Cho, So-Ra;Nam, Gi-Pyo;Jeong, Dae-Sik;Shin, Kwang-Yong;Park, Kang-Ryoung;Shin, Jae-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.9
    • /
    • pp.1125-1137
    • /
    • 2011
  • Recently, there have been previous research about the iris recognition in mobile device to increase portability, whose accuracy is affected by the quality of iris image. Iris image is affected by illumination environment during the image acquisition. The existing system has high accuracy in indoor environment. However the accuracy is degraded in outdoor environment, because the gray levels of iris patterns in image are changed, and ghost and eyelash shading regions are produced by the sunlight of various wavelengths into iris region. To overcome these problems, we propose new mobile iris camera system which uses the near-infrared (NIR) light illuminator of 850 nm and band pass filter (BPF) of 850 nm. To measure the performance of the proposed system, we compared it to the existing one with the iris images captured in indoor and outdoor sunlight environments in terms of the equal error rates (EER) based on false acceptance rate (FAR) and false rejection rate (FRR). The experimental result showed that the proposed system had the lower EERs than those of previous system by 0.96% (with frontal light in indoors), 4.94% (with frontal light in outdoor), 9.24% (with side light in outdoor), and 7% (with back light in outdoor), respectively.

Evaluation of Near-infrared Fluorescence-conjugated Peptides for Visualization of Human Epidermal Receptor 2-overexpressed Gastric Cancer

  • Jeong, Kyoungyun;Kong, Seong-Ho;Bae, Seong-Woo;Park, Cho Rong;Berlth, Felix;Shin, Jae Hwan;Lee, Yun-Sang;Youn, Hyewon;Koo, Eunhee;Suh, Yun-Suhk;Park, Do Joong;Lee, Hyuk-Joon;Yang, Han-Kwang
    • Journal of Gastric Cancer
    • /
    • v.21 no.2
    • /
    • pp.191-202
    • /
    • 2021
  • Purpose: A near-infrared (NIR) fluorescence imaging is a promising tool for cancer-specific image guided surgery. Human epidermal receptor 2 (HER2) is one of the candidate markers for gastric cancer. In this study, we aimed to synthesize HER2-specific NIR fluorescence probes and evaluate their applicability in cancer-specific image-guided surgeries using an animal model. Materials and Methods: An NIR dye emitting light at 800 nm (IRDye800CW; Li-COR) was conjugated to trastuzumab and an HER2-specific affibody using a click mechanism. HER2 affinity was assessed using surface plasmon resonance. Gastric cancer cell lines (NCI-N87 and SNU-601) were subcutaneously implanted into female BALB/c nu (6-8 weeks old) mice. After intravenous injection of the probes, biodistribution and fluorescence signal intensity were measured using Lumina II (Perkin Elmer) and a laparoscopic NIR camera (InTheSmart). Results: Trastuzumab-IRDye800CW exhibited high affinity for HER2 (KD=2.093(3) pM). Fluorescence signals in the liver and spleen were the highest at 24 hours post injection, while the signal in HER2-positive tumor cells increased until 72 hours, as assessed using the Lumina II system. The signal corresponding to the tumor was visually identified and clearly differentiated from the liver after 72 hours using a laparoscopic NIR camera. Affibody-IRDye800CW also exhibited high affinity for HER2 (KD=4.71 nM); however, the signal was not identified in the tumor, probably owing to rapid renal clearance. Conclusions: Trastuzumab-IRDye800CW may be used as a potential NIR probe that can be injected 2-3 days before surgery to obtain high HER2-specific signal and contrast. Affibody-based NIR probes may require modifications to enhance mobilization to the tumor site.

Evaluation of the KASI Detector Performance Test System Using an Andor iKon M CCD Camera

  • Yu, Young Sam;Kim, Jinsol;Park, Chan;Jeong, Woong-Seob;Kim, Minjin;Choi, Seonghwan;Park, Sung-Joon
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.201-210
    • /
    • 2018
  • The characterization of detectors installed in space- and ground-based instruments is important to evaluate the system performance. We report the development of a detector performance test system for astronomical applications using the Andor iKon M CCD camera. The performance test system consists of a light source, monochromator, integrating sphere, and power meters. We adopted the Czerny-Tuner monochromator with three ruled gratings and one mirror, which covers a spectral range of 200-9,000 nm with a spectral resolution of ~1 nm in the visible region. Various detector characteristics, such as the quantum efficiency, sensitivity, and noise, can be measured in wide wavelength ranges from the visible to mid-infrared regions. We evaluated the Korea Astronomy and Space Science Institute (KASI) detector performance test system by using the performance verification of the Andor iKon-M CCD camera. The test procedure includes measurements of the conversion gain ($2.86e^-/ADU$), full well capacity ($130K\;e^-$), nonlinearity, and pixel defects. We also estimated the read noise, dark current, and quantum efficiency as a function of the temperature. The lowest measured read noise is $12e^-$. The dark current at 223 K was determined to be $7e^-/s/pix$ and its doubling temperature is $5.3^{\circ}C{\pm}0.2^{\circ}C$ at an activation energy of 0.6 eV. The maximum quantum efficiency at 223 K was estimated to be $93%{\pm}2%$. We proved that the quantum efficiency is sensitive to the operating temperature. It varies up to 5 % in the visible region, while the variation increases to 30 % in the near-infrared region. Based on the comparison of our results with the test report by the vendor, we conclude that our performance test results are consistent with those from the vendor considering the test environment. We also confirmed that the KASI detector performance test system is reliable and our measurement method and analysis are accurate.

A Brazing Defect Detection Using an Ultrasonic Infrared Imaging Inspection (초음파 열 영상 검사를 이용한 브레이징 접합 결함 검출)

  • Cho, Jai-Wan;Choi, Young-Soo;Jung, Seung-Ho;Jung, Hyun-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.5
    • /
    • pp.426-431
    • /
    • 2007
  • When a high-energy ultrasound propagates through a solid body that contains a crack or a delamination, the two faces of the defect do not ordinarily vibrate in unison, and dissipative phenomena such as friction, rubbing and clapping between the faces will convert some of the vibrational energy to heat. By combining this heating effect with infrared imaging, one can detect a subsurface defect in material in real time. In this paper a realtime detection of the brazing defect of thin Inconel plates using the UIR (ultrasonic infrared imaging) technology is described. A low frequency (23 kHz) ultrasonic transducer was used to infuse the welded Inconel plates with a short pulse of sound for 280 ms. The ultrasonic source has a maximum power of 2 kW. The surface temperature of the area under inspection is imaged by an infrared camera that is coupled to a fast frame grabber in a computer. The hot spots, which are a small area around the bound between the two faces of the Inconel plates near the defective brazing point and heated up highly, are observed. And the weak thermal signal is observed at the defect position of brazed plate also. Using the image processing technology such as background subtraction average and image enhancement using histogram equalization, the position of defective brazing regions in the thin Inconel plates can be located certainly.

Design for Access Control System based on Voice Recognition for Infectious Disease Prevention (전염성 확산 차단을 위한 음성인식 기반의 출입통제시스템 설계)

  • Mun, Hyung-Jin;Han, Kun-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.7
    • /
    • pp.19-24
    • /
    • 2020
  • WHO declared a global pandemic on March 11th for Corona 19. However, there is a situation where you have to go to building for face-to-face education or seminars for economic and social activities. The first check method of COVID-19 infection is to measure body temperature, so the primary entrance and exit is blocked for near-field body temperature measurement. However, since it is troublesome to check directly, thermal camera is installed at the entrance of the building, and body temperature is measured indirectly using the infrared camera to control access. In case of middle and high schools, universities, and lifelong education center, we need a system that is possible to interoperate with attendance checks and automatically recognizes whether to wear masks and can authenticate students. We proposed the system that is to confirm whether to wear a mask with a camera that is embedded in a smart mirror, and that authenticates the user through voice recognition of the user who wants to enter the building by using voice recognition technology and determines whether to enter them or not. The proposed system can check attendance if it is linked with near-field temperature measurement and attendance check APP of student's smart phone.

Concentration Range Analysis for Fluorescence Expression of Indocyanine Green (Indocyanine green 형광조영제의 형광발현을 위한 농도 범위 분석)

  • Kim, Yong Jae;Lee, Da Ae;Yoon, Ki-Cheol;Kim, Kwang Gi
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.12
    • /
    • pp.1339-1346
    • /
    • 2019
  • In the characteristic of the brain malignant, the blood vessels and tumors have the same color and shape, and the boundary distinction is not clear, Therefore, it is difficult to observe the naked eye. Because of the high invasiveness, the risk of recurrence is high. Therefore, complete resection of the tumor is essential. The method for distinguishing the boundary between blood vessels and tumors is a fluorescence contrast method using indocyanine green (ICG), a fluorescence contrast agent. In ICG, the concentration range analysis is very important because the fluorescence expression state varies depending on the concentration. However, since the analysis result of the fluorescence expression condition is insufficient according to the current concentration, this paper proposes by analyzing the initial protocol of the concentration range. 780 nm infrared light was irradiated to the ICG sample to observe the fluorescence expression through a near infrared (NIR) camera. The wavelength is measured by using a spectrum instrument (ocean view) to observe the fluorescence expression wavelength of 811nm. As a result of analyzing the mol concentration according to each sample, the fluorescence expression range was found to be 16.15-0.16M and the optimum fluorescence concentration on the brightest part was found to be 3.23-0.81M.

GHOST ANALYSIS FOR THE OPTICS SYSTEM OF THE KASINICS (KASINICS 광학계의 고스트 분석)

  • Lee, Sung-Ho;Yuk, In-Soo;Jin, Ho;Pak, Soo-Jong;Han, Jeong-Yeol;Lee, Dae-Hee;Kong, Kyung-Nam;Cho, Seung-Hyun;Park, Young-Sik;Park, Jang-Hyun;Han, Won-Yong
    • Publications of The Korean Astronomical Society
    • /
    • v.20 no.1 s.24
    • /
    • pp.151-161
    • /
    • 2005
  • The reimaging optics of the KASINICS (KASI Near Infrared Camera System) includes many transparent components like an entrance window, band-pass filters, and blocking filters. As observational targets or in-field background objects, bright stars may cause optical ghosts that can significantly degrade the system performance of the KASINICS. We estimated analytically the relative brightness of ghost components with respect to a point source and examined the effects of tilting optical components as a method of suppressing ghosts. We also performed numerical ray tracings including all the optical components and found the results are consistent with those of the analytic estimations. We conclude that the KASINICS will not suffer from significant ghost effects with appropriate anti-reflection coatings and fittings for the optical components.

The study of environmental monitoring by science airship and high accuracy digital multi-spectral camera

  • Choi, Chul-Uong;Kim, Young-Seop;Nam, Kwang-Woo
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.750-750
    • /
    • 2002
  • The Airship PKNU is a roughly 12 m (32 ft) long blimp, filled with helium, whose two-gasoline power(3hp per engine) are independently radio controlled. The motors and propellers can be tilted and are attached to the gondola through an axle and supporting braces. Four stabilizing fins are mounted at the tail of the airship. To fill in the helium, a valve is placed at the bottom of the hull. The inaugural flight was on jul. 31.2002 at the Pusan, S.korea Most environment monitoring system\ problem use satellite image. But, Low resolution satellite image (multi-spectral) : 1km ∼ 250 m ground resolutions is lows. So, detail information acquisition is hard at the complex terrain. High resolution satellite image (black and white) 30m : The ground resolution is high. But it is high price, visit cycle and delivery time is long So. We want make high accuracy airship photogrammetry system. This airship can catch picture Multi. spectral Aerial photographing (visible, Near infrared and thermal infrared), and High resolution (over 6million pixel). It can take atmosphere datum (Temperature (wet bulb, dew point, general), Pressure (static, dynamic), Humidity, wind speed). this airship is very Quickness that aircraft install time is lower than 30 minutes, it is compact and that conveyance is easy. High-capacity save image (628 cut per 1time (over 6million and 4band(R,G,B,NIR)) and this airship can save datum this High accuracy navigatin (position and rotate angle) by DGPS tech. and Gyro system. this airship will do monitor about red-tide, sea surface temperate, and CH-A, SS and etc.

  • PDF