• Title/Summary/Keyword: Near-field detection

Search Result 120, Processing Time 0.026 seconds

Obstacle Avoidance using Power Potential Field for Stereo Vision based Mobile Robot (PPF를 이용한 4족 로봇의 장애물 회피)

  • 조경수;김동진;기창두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.554-557
    • /
    • 2002
  • This paper describes power potential field method for the collision-free path planning of stereo-vision based mobile robot. Area based stereo matching is performed for obstacle detection in uncertain environment. The repulsive potential is constructed by distributing source points discretely and evenly on the boundaries of obstacles and superposing the power potential which is defined so that the source potential will have more influence on the robot than the sink potential when the robot is near to source point. The mobile robot approaches the goal point by moving the robot directly in negative gradient direction of the main potential. We have investigated the possibility of power potential method for the collision-free path planning of mobile robot through various experiments.

  • PDF

Effects of Wind-Generated Bubbles on Sound Propagation (음파전달에 미치는 풍성기포의 영향)

  • Lee, Won-Byoung;Kim, Young-Shin;Joo, Jong-Min;Lee, Chang-Won;Na, Jung-Yul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.8
    • /
    • pp.395-402
    • /
    • 2006
  • When an active SONAR works in the subsurface. its detection Performance is limited by the reverberation. The winds Play a primary role in the Production of bubbles in the ocean. And the bubbles as efficient scatters contribute to the reverberant field. In this Paper the effects of wind-generated bubbles on sound propagation in the subsurface are investigated as a mid-frequency Hull-mounted SONAR works. The active signal excess is calculated at source depths 3. 5. and 10m considering bubble layer for frequencies 5. 7.5, and 10kHz. The change of the near-surface sound speed tend to increase surface reverberation levels and change the active signal excess. In the 10m/s winds. the maximum detection range reduces over 3km through the near-surface . The reason is the upper refraction due to the wind-generated bubbles.

Principles and Considerations of Bender Element Tests (벤더엘리먼트 시험의 원리와 고려사항)

  • Lee Jong-Sub;Lee Chang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.5
    • /
    • pp.47-57
    • /
    • 2006
  • The shear wave velocity is related with the stiffness of granular skeleton and mass density. The shear stiffness of the granular skeleton remains unaffected by the presence of the fluid. Bender elements are convenient shear wave transducers for instrumenting soil cells due to optimal soil-transducer coupling. This study addresses the principles of the shear wave, the design and implementation of bender elements including electromagnetic coupling prevention, directivity, resonant frequency, detection of first arrival, and near field effects. It is shown that electromagnetic coupling effects can be minimized using parallel-type bender elements. Thus, the in-plane S-wave directivity is quasi-circular. The resonant frequency of bender element installations depends on the geometry of the bender element, the anchor efficiency and the soil stiffness. One of the most cumbersome parts in the bender element test is near field effects, which affect the selection of arrival time. The selection of the first arrival within the near field Is effectively solved by the multiple reflection technique and signal matching technique. Bender elements, which requires several considerations, may be effective tools for the subsurface characterization by using S-wave.

Real-Time Object Detection System Based on Background Modeling in Infrared Images (적외선영상에서 배경모델링 기반의 실시간 객체 탐지 시스템)

  • Park, Chang-Han;Lee, Jae-Ik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.4
    • /
    • pp.102-110
    • /
    • 2009
  • In this paper, we propose an object detection method for real-time in infrared (IR) images and PowerPC (PPC) and H/W design based on field programmable gate array (FPGA). An open H/W architecture has the advantages, such as easy transplantation of HW and S/W, support of compatibility and scalability for specification of current and previous versions, common module design using standardized design, and convenience of management and maintenance. Proposed background modeling for an open H/W architecture design decreases size of search area to construct a sparse block template of search area in IR images. We also apply to compensate for motion compensation when image moves in previous and current frames of IR sensor. Separation method of background and objects apply to adaptive values through time analysis of pixel intensity. Method of clutter reduction to appear near separated objects applies to median filter. Methods of background modeling, object detection, median filter, labeling, merge in the design embedded system execute in PFC processor. Based on experimental results, proposed method showed real-time object detection through global motion compensation and background modeling in the proposed embedded system.

PEDOT: PSS 박막의 대면적 나노패터닝을 통한 구조형성방법 및 응용

  • Yu, Jeong-Hun;Nam, Sang-Hun;Lee, Jin-Su;Hwang, Gi-Hwan;Yun, Sang-Ho;Bu, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.127.2-127.2
    • /
    • 2013
  • 오늘날 유기고분자기반 태양전지는 다른 태양전지와 비교될 정도로 낮은 광변환효율로 인해 효율향 상을 위한 많은 연구들이 진행되어 왔다. 그중 패터닝을 통한 광포집률과 charge carrier 수집효율이 증가되었다는 많은 보고들이 있었다. 따라서 우리는 200~1,400 nm polystyrene bead를 합성하여 air-liquid interfacial 방법을 이용해 2차원 육방조밀구조를 갖는 template를 형성하고 Nanosphere lithography (NSL)를 이용하여 대면적으로 균일한 poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS)를 패턴화하였다. 균일한 패턴형성을 측정하기위해 Field Emission Scanning Electron Microscopy (FE-SEM), image를 얻었으며, Atomic Force Microscopy (AFM)를 통해 형성된 패턴의 낙차 높이를 얻었고, Near IR-UV-Vis을 통해 bead size 변화에따라 얻어진 PEDOT:PSS 패턴의 반사율을 측 정하였다.

  • PDF

Augmented Reality Framework for Data Visualization Based on Object Detection and Digital Twins

  • Pham, Hung;Nguyen, Linh;Huynh, Nhut;Lee, Yong-Ju;Park, Man-Woo
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1138-1145
    • /
    • 2022
  • While pursuing digitalization and paperless projects, the construction industry needs to settle on how to make the most of digitized data and information. On-site workers, who currently rely on paper documents to check and review design and construction plans, will need alternative ways to efficiently access the information without using any paper. Augmented Reality is a potential solution where the information customized to a user is aligned with the physical world. This paper proposes the Augmented Reality framework to deliver the information on on-site resources (e.g., workers and equipment) using head-mounted devices. The proposed framework was developed by interoperating Augmented Reality-supported devices and a digital twin platform in which all information related to ongoing tasks is accumulated in real-time. On-site resources appearing in the user's field of view are automatically detected by an object detection algorithm and then assigned to the corresponding information by matching the data in the digital twin platform. Preliminary experiments show the feasibility of the proposed framework. Worker detection results can be visualized on HoloLens 2 in near real-time, and the matching process obtained the accuracy greater than 88%.

  • PDF

Light-Adaptive Vision System for Remote Surveillance Using an Edge Detection Vision Chip

  • Choi, Kyung-Hwa;Jo, Sung-Hyun;Seo, Sang-Ho;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.162-167
    • /
    • 2011
  • In this paper, we propose a vision system using a field programmable gate array(FPGA) and a smart vision chip. The output of the vision chip is varied by illumination conditions. This chip is suitable as a surveillance system in a dynamic environment. However, because the output swing of a smart vision chip is too small to definitely confirm the warning signal with the FPGA, a modification was needed for a reliable signal. The proposed system is based on a transmission control protocol/internet protocol(TCP/IP) that enables monitoring from a remote place. The warning signal indicates that some objects are too near.

Rectangular Slot based Beam Focusing Dual-Band Phase Gradient Metasurface (직사각형 금속 슬롯을 활용한 이중대역 신호 집중 위상변화 메타표면)

  • Kyungsu Min;Sunggeon Kim;Icpyo Hong;Kyungwon Lee;Sunghun Jung;Myungsik Lee;Jonggwan Yook
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.558-566
    • /
    • 2024
  • This study proposes method for enhancing the performance of previously developed or produced weapon systems without developing new detection equipment by using Phase Gradient Metasurfaces(PGMS). Metasurface has been studied and utilized a lot to improve the detection performance of inorganic systems, but its utilization is low due to its narrow bandwidth and complex structure. To address some of these limitations, dual-band power focusing PGMS is proposed. Its frequency independent unit cell characteristic enables creating metasurface that concentrates signals in dual-band. The designed PGMS was validated through near-field and far-field measurement, confirming signal concentration at the specified focal length and improved gain in the dual bands.

The Study of Near-field Scanning Microwave Microscope for the Nondestructive Detection System (비파괴 측정을 위한 근접장 마이크로파 현미경 연구)

  • Kim, Joo-Young;Kim, Song-Hui;Yoo, Hyun-Jun;Yang, Jong-Il;Yoo, Hyung-Keun;Yu, Kyong-Son;Kim, Seung-Wan;Lee, Kie-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.5
    • /
    • pp.508-517
    • /
    • 2004
  • We described a near-field scanning microwave microscope which uses a high-quality dielectric resonator with a tunable screw. The operating frequency is f=4.5 5GHz. The probe tip is mounted in a cylindrical resonant cavity coupled to a dielectric resonator We developed a hybrid tip combining a reduced length of the tapered part with a small apex. In order to understand the function of the probe, we fabricated three different tips using a conventional chemical etching technique and observed three different NSMM images for patterened Cr films on glass substrates. We measured the reflection coefficient of different metal thin film samples with the same thickness of 300m and compared with theoretical impedance respectly. By tuning the tunable screw coming through the top cover, we could improve sensitivity, signal-to-noise ratio, and spatial resolution to better than $1{\mu}m$. To demonstrate the ability of local microwave characterization, the surface resistance of metallic thin films has been mapped.

Vital Sign Sensor Based on Second Harmonic Frequency Drift of Oscillator (발진기의 2채배 고조파 주파수 천이를 이용한 생체신호 측정센서)

  • Ku, Ki-Young;Hong, Yunseog;Lee, Hee-Jo;Yun, Gi-Ho;Yook, Jong-Gwan;Kim, Kang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.299-306
    • /
    • 2016
  • In this paper, a vital sign sensor based on impedance variation of resonator is proposed to detect the respiration and heartbeat signals within near-field range as a function of the separation distance between resonator and subject. The sensor consists of an oscillator with a built-in planar type patch resonator, a diplexer for only pass the second harmonic frequency, amplifier, SAW filter, and RF detector. The cardiac activity of a subject such as respiration and heartbeat causes the variation of the oscillation frequency corresponding impedance variation of the resonator within near-field range. The combination of the second harmonic oscillation frequency deviation and the superior skirt frequency of the SAW filter enables the proposed sensor to extend twice detection range. The experimental results reveal that the proposed sensor placed 40 mm away from a subject can reliably detect respiration and heartbeat signals.