• Title/Summary/Keyword: Near-Isotropic Characteristic

Search Result 5, Processing Time 0.02 seconds

Broadband U-Shaped RFID Tag Antenna with Near-Isotropic Characteristic (광대역에서 일정한 준 등방성 특성을 가지는 U-형태의 RFID 태그 안테나)

  • Lee, Sang-Woon;Jung, Hak-Joo;Choo, Ho-Sung;Park, Ik-Mo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.5
    • /
    • pp.480-492
    • /
    • 2009
  • In this paper, we proposed a broadband U-shaped RFID tag antenna with near-isotropic characteristic at UHF band. The proposed tag antenna is composed of the U-shaped half wavelength dipole and a rectangular shaped feed. The rectangular shaped feed that is located inside U-shaped dipole is connected for conjugate impedance matching with the commercial tag chip. A better constant gain deviation characteristic in the operating frequency band is achieved by inserting a rectangular slit in the lower center of the U-shaped antenna body. On the condition of VSWR<2, the tag antenna had the measured bandwidth of 10.36%, from 860.5 to 954.5 MHz, and 9.84%, from 864.5 to 954 MHz, for antenna without slit and with slit, respectively. On the condition of VSWR<5.8, the tag antennas had the measured bandwidth of 15.78%, from 835.5 to 979.5 MHz, and 15.89%, from 837 to 981.5 MHz, for antenna without slit and with slit, respectively. The difference between the maximum and minimum gain deviations of tag antenna without slit in the operating frequency band is 0.53 dB since the maximum and minimum gain deviations are 3.86 dB and 3.33 dB, respectively. Whereas the difference between the maximum and minimum gain deviations of tag antenna with slit in the operating frequency is 0.06 dB since the maximum and minimum gain deviations are 3.60 dB and 3.54 dB, respectively.

Transmit-Beam Pattern Measurement of the Active Phased-Array Antenna Using Near-Field Measurement Facility (근접 전계 시험 시설을 이용한 능동 위상 배열 안테나 송신 빔 패턴 측정)

  • Chae, Hee-Duck;Kim, Han-Saeng;Lee, Dong-Kook;Jeong, Myung-Deuk;Park, Jong-Kuk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.12
    • /
    • pp.1155-1164
    • /
    • 2011
  • In this paper, we proposed the transmit beam measurement method of active phased array antenna, which is installed in Korea's first developed naval medium range radar, using near-field measurement facility. The pulse-mode high power characteristics of active phased array antenna's trasmit-beam make it difficult to measure with general near-field measurement facilities where low power continuous RF signals are used. Thus, in this paper, the measurement method of active phased array antenna's transmit beam in conjunction with the near-field measurement facility, which is suitable for the high-power transmit beam measurement, and PNA-X network analyzer(Agilent Technologies), which can support pulse-mode measurement, was proposed and measured by near-field measurement techniques. And the EIRP(Effective Isotropic Radiated Power), the transmit characteristic of active phased array antenna, was measured by the near field measurement techniques and compared to numerical estimation which was nearly equal with small difference of 0.1 dB.

Antenna Performance Variation near a Lossy Material (손실성 물질 근접 시 안테나 성능변화)

  • Lee, Jae-Won;Wi, Sang-Hyuk;Kim, Young-Soo;Yang, Hoon-Gee;Yook, Jong-Gwan
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.353-356
    • /
    • 2005
  • There have been many researches on the antenna performance degradation with the presence of the human body around the antenna structure to accomodate personal communication service [1][2]. To better understand the human body effects on the antenna resonance, radiation pattern, and input impedance, simulation was carried out with changing of the distance between antenna and lossy material. Effects on the antenna performance by the surrounding materials are also important in the case of the RFID system. It is desirable that the tag antennas for RFID system must reveal isotropic radiation pattern as well as attain the good impedance matching. In this paper, we investigated the antenna resonance and input impedance characteristic when there exist a lossy material sphere near various types of antenna at 900 MHz. In short antenna resonance was mostly affected by lossy material in the case of a rectangular loop antenna, and impedance variation was smallest in the case of a halfwave dipole.

  • PDF

U-Shaped Broadband RFID Tag Antenna with a Parasitic Element (기생소자를 가지는 U-형태의 광대역 RFID 태그 안테나)

  • Lee, Sang-Woon;Cho, Chi-Hyun;Lee, Kee-Keun;Choo, Ho-Sung;Park, Ik-Mo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.1
    • /
    • pp.75-82
    • /
    • 2009
  • In this paper, we proposed a U-shaped broadband RFID tag antenna with a parasitic element operating at UHF band. The proposed tag antenna consists of a U-shaped half wavelength dipole antenna and an inverse U-shaped parasitic element inside the U-shaped dipole antenna. In order to have good impedance matching, the commercial tag chip is attached to the lower center of the rectangular shaped feed. On the condition of VSWR<2, the tag antenna had the measured bandwidth of 4.96 % from 882 to 927 MHz and showed the gain deviation of less than 3.16 dB. On the condition of VSWR<5.8, the tag antenna satisfies the worldwide UHF RFID bandwidth and is showed the gain deviation of less than 5.07 dB. The minimum gain deviation characteristic appears near the center of bandwidth which minimizes variation of gain deviation characteristic with respect to the frequency.

Study on Mineral Paragenesis in Sangdong Scheelite Deposit (상동광상(上東鑛床)의 광물공생(鑛物共生)에 관(關)한 연구(硏究))

  • Moon, Kun Ju
    • Economic and Environmental Geology
    • /
    • v.7 no.2
    • /
    • pp.45-62
    • /
    • 1974
  • Scheelite deposits in Sangdong mine are divided into three parallel vein groups, namely "Hanging-wall vein" which is located in the lowest parts of Pungchon Limestone, "Main vein" the most productive vein replaced a intercalated limestone bed in Myobong slate, "Foot-wall veins" a group of several thin veins parallel to main vein in Myobong slate. Besides the above, there are many productive quartz veins imbedded in the above veins and Myobong slate. Molybdenite and wolframite are barren in the former three veins group but associates only in quartz veins. Both main vein and foot-wall veins show regular zonal distribution, quartz rich zone in the center, hornblende rich zone surrounding the quartz rich zone and diopside rich zone in the further outside to the marginal parts of the vein. According to the distribution of three main minerals, quartz, hornblende and diopside the main vein can be divided into three zones which are in turn grouped into 7 subzones by distinct mineral paragenesis. They are summerized as follows: A. Diopside rich zone: 1. garnet-diopside.fl.uorite subzone 2. diopside-zoisite-quartz subzone 3. diopside-plagioclase subzone B. Hornblende rich zone: 4. hornblende-diopside-quartz subzone 5. hornblende-quartz-chlorite subzone 6. hornblende-plagioclase-quartz.sphene subzone C. Quartz rich zone: 7. quartz-mica-chlorite subzone The foot-wall veins can similarly be divided by mineral paragenesis into 3 zones, 6 subzones as follows: A. diopside rich zone: 1. garnet-diopside-quartz.fl.uorite subzone 2. garnet-diopside-wollastonite subzone B. Hornblende rich zone: 3. quartz-hornblende-chlorite subzone 4. hornblende-plagioclase-quartz subzone 5. hornblende-diopside-quartz subzone C. Quartz rich zone: 6. quartz-mica subzone The hanging-wall vein is generally grouped into 9 subzones by the mineral paragenesis which show random distribution. They are as follows: 1. diopside-garnet-fluorite subzone 2. diopside-zoisite-quartz subzone 3. diopside-hornblende-quartz-fluorite subzone 4. wollastonite-garnet-diopside subzone 5. hornblende-chlorite-quartz subzone 6. quartz-plagioclase-hornblende-sphene subzone 7. quartz-biotite subzone 8. quartz-calcite subzone 9. calcite-altered minerals subzone Among many composing minerals, garnet specially shows characteristic distribution and optical properties. Anisotropic and euhedral grossularite is generally distributed in the hanging wall vein and lower parts of the main vein, whereas isotropic and anhedral andradite in the upper parts of the main vein. Plagioclase (anorthite) and sphene are distributed ony near the foot-wall side of the aboveveins. wollastonite is a characteristic mineral in upper parts of the hang-wall vein. Molybdenite is distributed in the upper parts of quartz veins and wolframite in lower parts of quartz veins.

  • PDF