• Title/Summary/Keyword: Near-Infrared Laser

Search Result 88, Processing Time 0.025 seconds

Cleaning of NiP Hard Disk Substrate Using Near-Infrared and Ultraviolet Irradiation of Nd:YAG Laser Pulses (Nd:YAG 레이저의 근적외선과 자외선 펄스를 이용한 NiP 하드디스크 기층의 세척)

  • ;C. P. Grigoropoulos
    • Laser Solutions
    • /
    • v.4 no.2
    • /
    • pp.39-45
    • /
    • 2001
  • This paper introduces a cleaning process for removing submicron-sized particles from NiP hard disk substrates by the liquid-assisted laser cleaning technique. Measurements of cleaning Performance and time-resolved optical diagnostics are Performed to analyze the physical mechanism of contaminant removal. The results reveal that nanosecond laser pulses are effective for removing the contaminants regardless of the wavelength and that a thermal mechanism involving explosive vaporization of liquid dominates the cleaning process.

  • PDF

Design of a tumable Alexandrite laser resonator considering thermal lensing effect (Thermal lensing 효과를 고려한 tunable Alexandrite laser의 공진기 설계)

  • 윤태현
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.1-4
    • /
    • 1989
  • The Alexandrite (Cr:BeAl2O4) laser is one of the promising tunable (vibronic) solid state laser developed recently in the near infrared region (700~800nm) of the spectrum. The thermal lensing effect of rod may effect stable mode osicillation of the solid state laser. A design procedure of the Alexandrite laser resonator considering rod thermal lensing effect and misaligment sensitivity of the resonator will be presented.

  • PDF

APPLICATION OF A MULTI-WAVELENGTH NIR DIODE LASER ARRAY FOR NON-DESTRUCTIVE FOOD ANALYSIS

  • Tauscher, Bernhard;Butz, Peter;Lindauer, Ralf
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.3123-3123
    • /
    • 2001
  • Near infrared (NIR) spectroscopy has become a widely used method in food and beverage analysis because of its speed, accuracy and the simplicity of sample preparation. One of the basic requirements of NIR instruments is a wide dynamic range if weak, or small, absorption changes or concentrations are to be measured. Thus the instrument must be sufficiently luminous, and efficient, to enable measurements to be made in a reasonably short time, as for some applications (e.g. sorting) short response times are essential. Diode lasers function the same way as lasers but linewidths are not as narrow as typical lasers. In this work an array of seven laser diodes (in the range of 750-1100 nm) with energy outputs of around hundred milliwatts each were combined with a fast diode array spectrometer (400-1100 nm, 1024 pixels, integration time from 3 ms) as detector. Measurements in transmission mode were performed in solutions of sugars in aqueous solutions and in deuteriumoxide. The feasibility of non-destructive measurements in transmission mode was investigated for different fruits and vegetables.

  • PDF

Cleaning of Nip Hard Disk Substrate Using Near-Infrared and Ultraviolet Irradiation of Nd:Yag Laser Pulses (Nd:YAG 레이저의 근적외선과 자외선 펄스를 이용한 NiP 하드디스크 기층의 세척)

  • 김동식
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2000.11a
    • /
    • pp.23-26
    • /
    • 2000
  • This paper introduces a cleaning process for removing submicron-sized particles from NiP hard disk substrates by the liquid-assisted laser cleaning technique. Measurements of cleaning performance and time-resolved optical diagnostics are performed to analyze the physical mechanism of contaminant removal. The results reveal that nanosecond laser pulses are effective for removing the contaminants regardless of the wavelength and that a thermal mechanism involving explosive vaporization of liquid dominates the cleaning process.

  • PDF

Evaluation of the Scar Treatment using Near Infrared Diffuse Reflectance Spectroscopy (근적외선 확산반사 분광법을 이용한 흉터치료 평가)

  • Jang, I.J.;Youn, Jong-In
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.53-60
    • /
    • 2016
  • Monitoring of dermal collagen is important to assess various scar conditions, and many diagnostic methods have been applied to quantify collagen contents in scar tissue. In this study, Monte Carlo simulation was used to evaluate diffuse reflectance distributions in scar condition by a near-infrared laser source. The results showed that the effective distance of the light source and the detector was 2 mm to monitor the various scar conditions using diffuse reflectance spectroscopy. This study may suggest to the optimal design for a near infrared diffuse reflectance spectroscopy during the scar treatment.

Infrared Scanning Near-Field Optical Microscopy (IR-SNOM) Below the Diffraction Limit

  • Sanghera, J.S.;Aggarwal, I.D.;Cricenti, A.;Generossi, R.;Luce, M.;Perfetti, P.;Margoritondo, G.;Tolk, N.;Piston, D.
    • Ceramist
    • /
    • v.10 no.3
    • /
    • pp.55-66
    • /
    • 2007
  • Infrared Scanning Near-field Optical Microscopy (IR-SNOM) is an extremely powerful analytical instrument since it combines IR spectroscopy's high chemical specificity with SNOM's high spatial resolution. In order to do this in the infrared, specialty chalcogenide glass fibers were fabricated and their ends tapered to generate SNOM probes. The fiber tips were installed in a modified near field microscope and both inorganic and biological samples illuminated with the tunable output from a free-electron laser located at Vanderbilt University. Both topographical and IR spectral images were simultaneously recorded with a resolution of ${\sim}50\;nm$ and ${\sim}100\;nm$, respectively. Unique spectroscopic features were identified in all samples, with spectral images exhibiting resolutions of up to ${\lambda}/60$, or at least 30 times better than the diffraction limited lens-based microscopes. We believe that IR-SNOM can provide a very powerful insight into some of the most important bio-medical research topics.

  • PDF

APPLICATION OF TIME-OF-FLIGHT NEAR INFRARED SPECTROSCOPY TO WOOD

  • Tsuchikawa, Satoru;Tsutsumi, Shigeaki
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1182-1182
    • /
    • 2001
  • In this study, the newly constructed optical measurement system, which was mainly composed of a parametric tunable laser and a near infrared photoelectric multiplier, was introduced to clarify the optical characteristics of wood as discontinuous body with anisotropic cellular structure from the viewpoint of the time-of-flight near infrared spectroscopy (TOF-NIRS). The combined effects of the cellular structure of wood sample, the wavelength of the laser beam λ, and the detection position of transmitted light on the time resolved profiles were investigated in detail. The variation of the attenuance of peak maxima At, the time delay of peak maxima Δt and the variation of full width at half maximum Δw were strongly dependent on the feature of cellular structure of a sample and the wavelength of the laser beam. The substantial optical path length became about 30 to 35 times as long as sample thickness except the absorption band of water. Δt ${\times}$ Δw representing the light scattering condition increased exponentially with the sample thickness or the distance between the irradiation point and the end of sample. Around the λ=900-950 nm, there may be considerable light scattering in the lumen of tracheid, which is multiple specular reflection and easy to propagate along the length of wood fiber. Such tendency was remarkable for soft wood with the aggregate of thin layers of cell walls. When we apply TOF-NIRS to the cellular structural materials like wood, it is very important to give attention to the difference in the light scattering within cell wall and the multiple specular-like reflections between cell walls. We tried to express the characteristics of the time resolved profile on the basis of the optical parameters for light propagation determined by the previous studies, which were absorption coefficient K and scattering coefficient S from Kubelka-Munk theory and n from nth power cosine model of radiant intensity. The wavelength dependency of the product of K/S and n, which expressed the light-absorbing and -scattering condition and the degree of anisotropy, respectively, was similar to that of the time delay of peak maxima Δt. The variation of the time resolved profile is governed by the combination of these parameters. So, we can easily find the set of parameters for light propagation synthetically from Δt.

  • PDF

Infrared-to-blue Upconversion in Tm-doped Oxyfluoroborate Glasses (Oxyfluoroborate 유리재료에서의 적외선-청색 상방 형광발생)

  • P. Babu;Lee Seon-Gyun;Van-Thai Pham;Im Gi-Su;Seo Hyo-Jin;C. K. Jayasankar
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.116-117
    • /
    • 2002
  • In recent years, there has been an increasing interest in $Tm^{3+}$ doped crystals and glasses due to their potential applications as near infrared lasers and infrared to visible upconversion lasers for use in different fields such as medical surgery, eye safe laser radar, data storage, barcode reading and so on. Thulium ions have stable excited levels suitable for emitting blue upconversion fluorescence. (omitted)

  • PDF