• Title/Summary/Keyword: Near work

Search Result 993, Processing Time 0.025 seconds

Magneto-Optical Recording in Near-Field using Elliptic Solid Immersion Lens (타원형 고체잠입렌즈를 이용한 근접장 광자기 기록)

  • 박재혁;이문도;박노철;박영필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.678-681
    • /
    • 2003
  • In conventional optical data storage numerical aperture (NA) cannot be over 1 because of diffraction limit. To overcome this limitation. solid immersion lens(SIL) have produced a great interest in near-field optical data storage. In conventional optical recording method, the dual lens system using object lens and SIL had been studied generally. But the conventional SIL system has some critical problems that must be solved. The problems are heat, contamination. alignment of optical components and so on. To solve these problems. this work proposes enhanced SIL which has several advantages for mechanical and optical issues. This new SIL system named elliptic SIL(ESIL) can use evanescent energy in near-field more effectively. In addition. because of applying the inside recording unlike previous surface recording, ESIL can clear up the problems. The design and analysis of ESIL art executed by using CODE V. Also, in this paper we composed actual data recording system and achieved recording experiment by applying ESIL to magneto-optical recording. In conclusion. we analyze the improvement of aerial density and the reasonability of application to real data storage system.

  • PDF

A Study on Residual stress at Cutting work (절삭가공시 잔류응력에 관한 연구)

  • 주호윤
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.3
    • /
    • pp.111-117
    • /
    • 1997
  • The sudden-stop apparatus is made to measure the residual stress of the infinitesimal area at the turning work surface by using the X-ray stress apparatus. This study is trued to make the cutting work the instantaneous stopping state in the normal working state. The behaviour of work material near the tool is estimated. The estimation method is that the distribution of residual stress can be also measured. The object is to clarify and control the mechanism to leave the adequate stress of the finishing surface. It's beginning is due to observe the occurrence state of the residual stress at the cutting work. The result obtained by this study is as follows. The chips are not separated from the work materials at all the cutting experiments of built-up edges or the shearing areas etc. which can be precisely observed by using the sudden-stop apparatus. The strain of movable system which can be seen at the part of working layer means the size of strain. This experiment proves that the working strain should be lessened to make the size of strain control the residual stress happened at the cutting surface.

  • PDF

Analysis on Tracking Schedule and Measurements Characteristics for the Spacecraft on the Phase of Lunar Transfer and Capture

  • Song, Young-Joo;Choi, Su-Jin;Ahn, Sang-Il;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.51-61
    • /
    • 2014
  • In this work, the preliminary analysis on both the tracking schedule and measurements characteristics for the spacecraft on the phase of lunar transfer and capture is performed. To analyze both the tracking schedule and measurements characteristics, lunar transfer and capture phases' optimized trajectories are directly adapted from former research, and eleven ground tracking facilities (three Deep Space Network sties, seven Near Earth Network sites, one Daejeon site) are assumed to support the mission. Under these conceptual mission scenarios, detailed tracking schedules and expected measurement characteristics during critical maneuvers (Trans Lunar Injection, Lunar Orbit Insertion and Apoapsis Adjustment Maneuver), especially for the Deajeon station, are successfully analyzed. The orders of predicted measurements' variances during lunar capture phase according to critical maneuvers are found to be within the order of mm/s for the range and micro-deg/s for the angular measurements rates which are in good agreement with the recommended values of typical measurement modeling accuracies for Deep Space Networks. Although preliminary navigation accuracy guidelines are provided through this work, it is expected to give more practical insights into preparing the Korea's future lunar mission, especially for developing flight dynamics subsystem.

Quantum Computing Performance Analysis of the Ground-State Estimation Problem (기저상태계산 문제에 대한 양자컴퓨팅의 성능 분석)

  • Choi, Byung-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.2
    • /
    • pp.58-63
    • /
    • 2018
  • As the quantum volume increases, we are about to use quantum computers for real applications. Therefore, it is necessary to investigate how much quantum-computational gain is achievable in the near future. In this work, we analyze a fault-tolerant quantum computing method for near-term applications such as the ground-state estimation problem. Based on quantitative analysis, we find that it is still necessary to improve the current fault-tolerant quantum computing. This work also discusses which parts should be improved to improve quantum computing performance.

Development of a FMCW Radar Using a Compensation Algorithm for VCO Nonlinearity (VCO 비선형 보상 알고리듬을 적용한 근거리 측정용 FMCW 레이더 개발)

  • Chun, Joong Chang;Lee, Hyun Soo;Sohn, Jong Yoon;Kim, Tae Soo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.1
    • /
    • pp.25-30
    • /
    • 2014
  • In this paper, we have implemented an FMCW radar for a near distance measurement. In the structure of the FMCW radar, it is a key problem to solve the VCO nonlinearity. In this work, we have adopted a VCO nonlinearity compensation algorithm using the spectrum correlation of beat signals. The radar experimented in this work uses an X-band(9.55~10.25GHz) microwave signal, and realizes precision of 3% in the range of 30m. The prototype can be applied to the front surveillance radar such as in vehicle anti-collision and probing robot mission.

A Single-Ended ADC with Split Dual-Capacitive-Array for Multi-Channel Systems

  • Cho, Seong-Jin;Kim, Ju Eon;Shin, Dong Ho;Yoon, Dong-Hyun;Jung, Dong-Kyu;Jeon, Hong Tae;Lee, Seok;Baek, Kwang-Hyun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.5
    • /
    • pp.504-510
    • /
    • 2015
  • This paper presents a power and area efficient SAR ADC for multi-channel near threshold-voltage (NTV) applications such as neural recording systems. This work proposes a split dual-capacitive-array (S-DCA) structure with shifted input range for ultra low-switching energy and architecture of multi-channel single-ended SAR ADC which employs only one comparator. In addition, the proposed ADC has the same amount of equivalent capacitance at two comparator inputs, which minimizes the kickback noise. Compared with conventional SAR ADC, this work reduces the total capacitance and switching energy by 84.8% and 91.3%, respectively.

Analytical Characterization of a Dual-Material Double-Gate Fully-Depleted SOI MOSFET with Pearson-IV type Doping Distribution

  • Kushwaha, Alok;Pandey, Manoj K.;Pandey, Sujata;Gupta, Anil K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.2
    • /
    • pp.110-119
    • /
    • 2007
  • A new two-dimensional analytical model for dual-material double-gate fully-depleted SOI MOSFET with Pearson-IV type Doping Distribution is presented. An investigation of electrical MOSFET parameters i.e. drain current, transconductance, channel resistance and device capacitance in DM DG FD SOI MOSFET is carried out with Pearson-IV type doping distribution as it is essential to establish proper profiles to get the optimum performance of the device. These parameters are categorically derived keeping view of potential at the center (${\phi}_c$) of the double gate SOI MOSFET as it is more sensitive than the potential at the surface (${\phi}_s$). The proposed structure is such that the work function of the gate material (both sides) near the source is higher than the one near the drain. This work demonstrates the benefits of high performance proposed structure over their single material gate counterparts. The results predicted by the model are compared with those obtained by 2D device simulator ATLAS to verify the accuracy of the proposed model.

The Behavior of Effluent Discharged from the Confined Dumping Facility (제한투기시설에서 배출되는 여수의 거동)

  • 정대득;이중우
    • Journal of Korean Port Research
    • /
    • v.14 no.4
    • /
    • pp.429-439
    • /
    • 2000
  • The primary purpose of dredging work is to maintain navigational readiness and to increase environmental amenity. Therefore the dredging project, which is composed of excavating, removing, transporting and storing or dumping dredged material, must be carefully managed to insure that dredging works are completed in a cost-effective and environmentally safe method. The most important point in dumping operations is evaluating and decreasing the impacts of dumping works at the dumping area. One of the most effective method for this purpose is using the schematic process composed of the sophisticate plan, precise work and predicting/reducing the impacts based on an numerical model being closely linked with field observation. In this study, a numerical model is used to predict the spatial transport and fate of the effluent discharged from the confined dumping facility(CDF) located at a coastal area. To achive this purpose, numerical models were used for reappearing the tidal current of concerned area. These models were then applied to Mokpo harbpr where capital dredging and maintenance dredging are being conducted simultaneously and the CDF is under construction. In series of model case study, we found that the effluent discharged from CDF was governed by the receiving water condition and outfall geometry, so that limit of near-field was 14∼500 meter down stream and 4∼150 meter in transverse direction. dilution ranged from 1.1 to 8.2 on the cases. Long-term diffusion characteristics was governed by the dilution rate during near-field behavior, ambient conditions and CDF operation modes.

  • PDF

APPLICATION OF BENFOR'S EQUATIONS TO THE PROBLEM OF "SEEING THROUGH LAYERS"

  • Krivoshiev, Georgi -P.;Chalucova, Raina-P.;Dahm, Donald-J.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1132-1132
    • /
    • 2001
  • This work is a further development of the method created by G. Krivoshiev in 1996 for elimination of peel interference and prediction of fruit flesh optical density. In this investigation, as it was earlier, the objects are observed as being structured by three successive layer “AlongrightarrowOlongrightarrowB” denoting “peel-flesh-peel”. In the first version of the method the transmittances of the surface layers A and B were measured according to Kubelka-Munk theory by means of their diffuse reflectance. At that the overall transmittance T was approximated in the form of a multiplication approximation being valid for plane-parallel layers of a non-scattering material. In this work this approximation was done away with applying the theory of discontinuum, respectively Benfor's equations. As a result two mathematical models were created for non-destructive prediction of fruit flesh optical density. These models are different from the ones based solely on Kubelka-Munk theory, the destruction being marked by the terms 1n (1 - $R_{A}R_{0}$) and 1n (1 - $R_{A}R_{B}$), where: $R_{A}$ and $R_{B}$ are reflectance values for the surface layers A and B; $R_{0}$ is the average reflectance of the internal layer that could be obtained empirically by means of a preliminary measurement of sufficiently large number of physically peeled fruits of a given species and variety.

  • PDF

NEAR-INFRARED OBSERVING CONDITIONS AT THE BOAO AND THE SOAO (보현산천문대와 소백산천문대에서의 근적외선 관측 조건)

  • Moon, Bong-Kon;Lee, Sung-Ho;Park, Soo-Jong;Jin, Ho;Kim, Yong-Ha;Yuk, In-Soo;Han, Won-Yong
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.453-466
    • /
    • 2004
  • Korea Astronomy Observatory(KAO) has been developing the KAONICS, KAO Near-Infrared Camera System, which will be used for near-infrared observations in the ground-based telescopes of Korea. As a phase-A study for this work, we investigated observational environments at the Sobaeksan Optical Astronomy Observatory(SOAO) and the Bohyunsan Optical Astronomy Observatory(BOAO) quantitatively. In the J, H, K, and L bands, atmospheric transmission was calculated mainly depending on the PWV(Precipitable Water Vapour), and limiting magnitudes were computed for the SOAO and the BOAO, respectively. We conclude that these observatories have similar observing capabilities and domestic observations are possible in near-infrared.