• Title/Summary/Keyword: Near Real-Time

Search Result 651, Processing Time 0.025 seconds

A New Conceptual Network Synchronization System using Satellite time as an Intermediation parameter (위성시각을 매개로한 신 개념의 망동기시스템)

  • Kim, Young-Beom;Kwon, Taeg-Yong;Park, Byoung-Chul;Kim, Jong-Hyun
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.3 no.2
    • /
    • pp.11-17
    • /
    • 2004
  • In this paper we propose a new conceptual system for a network clock in which all node clocks are simultaneously synchronized to the national standard by intermediation parameter of satellite time. Experiments have shown the possibility of its adoption by real networks. The new proposed method has various structural benefits, in particular all node clocks can be kept at the same hierarchical quality in contrast to the existing method. The measurement results show that the accuracy of the experimental slave clock system can be kept within a few parts In 1012 and the MTIE (Maximum Time Interval Error) sufficiently meets ITU-T G.811 for the primary reference clock. A prototype system with fully automatic operational functions has been realized at present and is expected to be directly used for communication network synchronization in the near future.

  • PDF

A Priority Index Method for Efficient Charging of PEVs in a Charging Station with Constrained Power Consumption

  • Kim, Seung Wan;Jin, Young Gyu;Song, Yong Hyun;Yoon, Yong Tae
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.820-828
    • /
    • 2016
  • The sizable electrical load of plug-in electric vehicles may cause a severe low-voltage problem in a distribution network. The voltage drop in a distribution network can be mitigated by limiting the power consumption of a charging station. Then, the charging station operator needs a method for appropriately distributing the restricted power to all plug-in electric vehicles. The existing approaches have practical limitation in terms of the availability of future information and the execution time. Therefore, this study suggests a heuristic method based on priority indexes for fairly distributing the constrained power to all plug-in electric vehicles. In the proposed method, PEVs are ranked using the priority index, which is determined in real time, such that a near-optimal solution can be obtained within a short computation time. Simulations demonstrate that the proposed method is effective in implementation, although its performance is slightly worse than that of the optimal case.

Prediction of Chemical Composition in Distillers Dried Grain with Solubles and Corn Using Real-Time Near-Infrared Reflectance Spectroscopy

  • Choi, Sung Won;Park, Chang Hee;Lee, Chang Sug;Kim, Dong Hee;Park, Sung Kwon;Kim, Beob Gyun;Moon, Sang Ho
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.3
    • /
    • pp.177-184
    • /
    • 2013
  • This work was conducted to assess the use of Near-infrared reflectance spectroscopy (NIRS) as a technique to analyze nutritional constituents of Distillers dried grain with solubles (DDGS) and corn quickly and accurately, and to apply an NIRS-based indium gallium arsenide array detector, rather than a NIRS-based scanning system, to collect spectra and induce and analyze calibration equations using equipment which is better suited to field application. As a technique to induce calibration equations, Partial Least Squares (PLS) was used, and for better accuracy, various mathematical transformations were applied. A multivariate outlier detection method was applied to induce calibration equations, and, as a result, the way of structuring a calibration set significantly affected prediction accuracy. The prediction of nutritional constituents of distillers dried grains with solubles resulted in the following: moisture ($R^2$=0.80), crude protein ($R^2$=0.71), crude fat ($R^2$=0.80), crude fiber ($R^2$=0.32), and crude ash ($R^2$=0.72). All constituents except crude fiber showed good results. The prediction of nutritional constituents of corn resulted in the following: moisture ($R^2$=0.79), crude protein ($R^2$=0.61), crude fat ($R^2$=0.79), crude fiber ($R^2$=0.63), and crude ash ($R^2$=0.75). Therefore, all constituents except for crude fat and crude fiber were predicted for their chemical composition of DDGS and corn through Near-infrared reflectance spectroscopy.

Rapid Characterization and Prediction of Biomass Properties via Statistical Techniques

  • Cho, Hyun-Woo
    • Clean Technology
    • /
    • v.18 no.3
    • /
    • pp.265-271
    • /
    • 2012
  • The use of renewable energies has been required to diminish the dependency on fossil fuels. As one of clean energy sources biomass has been extensively studied because various biomass resources necessitated rapid characterization of their chemical and physical properties in an on-line or real-time basis. For such an analysis near-infrared (NIR) spectroscopy has been successfully applied because of its non-invasive and informative characteristics. In this work, the applicability of nonlinear chemometric techniques based on biomass near infrared (NIR) data is evaluated for the rapid prediction of ash/char contents in different types of biomass. The prediction results of various prediction models and the effect of using preprocessing methods for NIR data are compared using six types of biomass NIR data. The results showed that nonlinear prediction models yielded better prediction performance than linear ones. It also turned out that by adopting the use of proper preprocessing methods the performance of prediction of biomass properties improved.

Real-Time Localization of Parathyroid Glands with Near Infrared Light during Thyroid and Parathyroid Surgery (갑상선·부갑상선 수술 중 근적외선을 이용한 실시간 부갑상선의 국소화)

  • Kim, Sung Won;Jeong, Yeong Wook;Koh, Yoon Woo;Lee, Kang Dae
    • International journal of thyroidology
    • /
    • v.11 no.2
    • /
    • pp.92-98
    • /
    • 2018
  • Intraoperative identification and localization of parathyroid glands are crucial step in preventing postoperative hypocalcemia during thyroid and parathyroid surgery. If there is a method to predict the parathyroid's location rather than detecting and verifying with naked eye, it would make the operator easier to find and identify the parathyroid. Recently, near-infrared light imaging technologies have been introduced in the fields of thyroid and parathyroid surgery to predict the localization of the parathyroid. These are being conducted in two ways: autofluorescence imaging with a unique intrinsic fluorophore in the parathyroid tissues and fluorescence imaging with external fluorescence materials specially absorbed into parathyroid tissues. We are suggest that parathyroid glands can be detected by surgeon with NIR autofluorescence imaging even if they are covered by fibrofatty tissues before they are detected by surgeon's naked eye. These novel techniques are very useful to identify and preserve parathyroid glands during thyroidectomy. In this article, we reviewed the latest papers that describe autofluorescence imaging and exogenous ICG fluorescence imaging of parathyroid glands during thyroid and parathyroid surgery.

A Study on the Construction of Near-Real Time Drone Image Preprocessing System to use Drone Data in Disaster Monitoring (재난재해 분야 드론 자료 활용을 위한 준 실시간 드론 영상 전처리 시스템 구축에 관한 연구)

  • Joo, Young-Do
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.143-149
    • /
    • 2018
  • Recently, due to the large-scale damage of natural disasters caused by global climate change, a monitoring system applying remote sensing technology is being constructed in disaster areas. Among remote sensing platforms, the drone has been actively used in the private sector due to recent technological developments, and has been applied in the disaster areas owing to advantages such as timeliness and economical efficiency. This paper deals with the development of a preprocessing system that can map the drone image data in a near-real time manner as a basis for constructing the disaster monitoring system using the drones. For the research purpose, our system is based on the SURF algorithm which is one of the computer vision technologies. This system aims to performs the desired correction through the feature point matching technique between reference images and shot images. The study area is selected as the lower part of the Gahwa River and the Daecheong dam basin. The former area has many characteristic points for matching whereas the latter area has a relatively low number of difference, so it is possible to effectively test whether the system can be applied in various environments. The results show that the accuracy of the geometric correction is 0.6m and 1.7m respectively, in both areas, and the processing time is about 30 seconds per 1 scene. This indicates that the applicability of this study may be high in disaster areas requiring timeliness. However, in case of no reference image or low-level accuracy, the results entail the limit of the decreased calibration.

THE NONDESTRUCTIVE MEASUREMENT OF THE SOLUBLE SOLID AND ACID CONTENTS OF INTACT PEACH USING VIS/NIR TRANSMITTANCE SPECTRA

  • Hwang, I.G.;Noh, S.H.;Lee, H.Y.;Yang, S.B.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.210-218
    • /
    • 2000
  • Since the SSC(soluble solid contents) and titratable acidity of fruit are highly concerned to the taste, the need for measuring them by non-destructive technology such as NIR(Visual and Near-infrared) spectroscopy is increasing. Specially, in order to grade the quality of each fruit with a sorter at sorting and packing facilities, technologies for online measurement satisfying the tolerance in terms of accuracy and speed should be developed. Many researches have been done to develop devices to measure the internal qualities of fruit such as SSC, titratable acidity, firmness, etc. with the VIS(Visual)/NIR(Near Infrared) reflectance spectra. The distributions of the SSC, titratable acidity, firmness, etc. are different with respect to the position and depth of fruit, and generally the VIS/NIR light can interact with fruit in a few millimeters of pathlength, and it is very difficult to measure the qualities of inner flesh of fruit. Therefore, to measure the average concentrations of each quality factor such as SSC and titratable acidity with the reflectance-type NIR devices, the spectra of fruit at several positions should be measured. Recently, the interest about the transmittance-type VIS/NIR devices is increasing. NIR light can penetrate through the fruit about 1/10-1/1,000,000 %. Therefore, very intensive light source and very sensitive sensor should be adopted to measure the transmitted light spectra of intact fruit. The ultimate purpose of this study was to develop a device to measure the transmitted light spectra of intact fruit such as apple, pear, peach, etc. With the transmittance-type VIS/NIR device, the feasibility of measurement of the SSC and titratable acidity in intact fruit cultivated in Korea was tested. The results are summarized as follows; A simple measurement device which can measure the transmitted light spectra of intact fruit was constructed with sample holder, two 500W-tungsten halogen lamps, a real-time spectrometer having a very sensitive CCD array sensor and optical fiber probe. With the device, it was possible to measure the transmitted light spectra of intact fruit such as apple, pear and peach. Main factors affecting the intensity of transmitted light spectra were the size of sample, the radiation intensity of light source and the integration time of the detector. Sample holder should be designed so that direct light leakage to the probe could be protected. Preprocessing method to the raw spectrum data significantly influenced the performance of the nondestructive measurement of SSC and titratable acidity of intact fruit. Representative results of PLS models in predicting the SSC of peach were SEP of 0.558 Brix% and R2 of 0.819, and those in predicting titratable acidity were SEP of 0.056% and R2 of 0.655.

  • PDF

The Effect of Location of Waiting Place on Consumers' Perceived Waiting Time in a Family Restaurant (레스토랑의 대기 장소의 위치가 고객의 대기시간 지각에 미치는 영향)

  • PARK, Eun-Young
    • Journal of Distribution Science
    • /
    • v.17 no.6
    • /
    • pp.77-84
    • /
    • 2019
  • Purpose - Although an extensive body of research in psychology and marketing focuses on perceived waiting time, no research has examined the effect of the location of the waiting place on perceived waiting time. In particular, this study suggests that customers who are waiting in a restaurant may have different perceived waiting time depending on whether they are in close proximity to the service area (e.g., dining area) or farther from it. In particular, the author examines how and why the location of the waiting place affects the perceived waiting time of the consumer and reveals the mental simulation as its psychological mechanism. Research design, data, and methodology - This study conducted field surveys with customers waiting in real restaurants. Eighty-eight people participated under two conditions: a restaurant with a waiting place near the dining area and a restaurant with a waiting place far from the dining area. Participants responded to questions about perceived waiting time (the dependent variable), mental simulation (the mediator), and demographic variables. To verify the hypothesis, ANOVA and bootstrapping analysis were performed. Results - The major results from the field study are as follows. First, participants perceived wait time differently depending on the location of the restaurant's waiting place: participants in the restaurant with a waiting place close to the dining area perceived significantly shorter waiting times. Second, the effect of the location of the waiting place on the perceived waiting time was mediated by mental simulation: the closer the wait location is to the dining area, the more imagination the customer exercises about the meal, which in turn distracts attention from time flow and shortens the perceived wait time. Conclusion - This study has a theoretical implication in that it extends research on perceived waiting time as the first study of how and why the location of a waiting place affects a customer's perceived waiting time. It has a practical implication that can be used as a marketing tactics to improve the image of the service provider by changing the location of the waiting place.

Study on Vehicle Routing Problem with Minimum Delivery Completion Time (특송소화물 배송완료시간 최소화를 위한 차량경로문제 연구)

  • Lee, Sang-Heon
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.7 s.78
    • /
    • pp.107-117
    • /
    • 2004
  • The growing demand for customer-response, made-to-order manufacturing and satisfactory delivery are stimulating the importance of commercial fleet management problem. Moreover, the rapid transformation to the customer-oriented multi-frequency, relatively small fleet, such as home delivery and Perishable goods, requiring prompt delivery and advanced real-time operation of vehicle fleets. In this paper we consider the vehicle routing problem(VRP) to minimize delivery completion time which is equal to the time that last customer wait for the vehicle in fleet operation. The mathematical formulation is different from those for the classical VRP which is minimizing cost/distance/time by running vehicles in manager's point of view. The key aspect of this model is not considering the return time from the last customer to depot in every vehicle path. Thereby, the vehicle dispatcher can afford to dynamically respond to customer demand and vehicle availability. The customer's position concerned with minimizing waiting time that may be applied for the delivery of product required freshness or delivery time. Extensive experiments are carried out to compare the performance of minimizing delivery completion time by using the ILOG Solver which has the advantage of solving quickly an interim solution very near an optimal solution. The experimental results show that the suggested model can easily find near optimal solution in a reasonable computational time under the various combination of customers and vehicles.

Research of Customized Electric Wheelchair Control System using NFC on Mobile Device Environment (모바일 디바이스 환경 기반의 NFC를 이용한 사용자 맞춤형 전동 휠체어 제어 시스템 연구)

  • Park, Sanghyun;Kim, Jinsul
    • Smart Media Journal
    • /
    • v.4 no.2
    • /
    • pp.17-25
    • /
    • 2015
  • In this paper proposes an idea for using NFC(Near Field Communication) on smalt mobile devices, you can easily control the electric wheelchair system. In this system with previous researches controlled a power wheelchair in a mobile device using Bluetooth communication, the board communicates with the integrated control of the wheelchair. With smart mobile devices, the wheelchair control board integrating the signal generated by checking real time so that the user can easily monitor the state of the wheelchair. Users are using smalt mobile devices, the wheelchair can be controlled easily, and the setting at any time according to the state of the individual and can be used. HEX format control is directly in hardware, allowing analysis was read, the user settings are typically used to match cards which support NFC technology such as bus card for registration, storing the selected information and enable read and were applicable. By applying this system, wheelchairs oriented aids disabled and older people able to access to provide with stability.