• Title/Summary/Keyword: Near Infrared Reflectance (NIR)

Search Result 183, Processing Time 0.027 seconds

Comparison of optical reflectance spectrum at blade and vein parts of cabbage and kale leaves

  • Ngo, Viet-Duc;Ryu, Dong-Ki;Chung, Sun-Ok;Park, Sang-Un;Kim, Sun-Ju;Park, Jong-Tae
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.2
    • /
    • pp.163-167
    • /
    • 2013
  • Objective of the study was to compare reflectance spectrum in the blade and the vein parts of cabbage and kale leaves. A total 6 cabbage and kale leaves were taken from a plant factory in Chungnam National University, Korea. Spectra data were collected with a UV/VIS/NIR spectrometer (model: USB2000, Ocean Optics, FL, USA) in the wavelength region of 190 - 1130 nm. Median filter smoothing method was selected to preprocess the obtained spectra data. We computed reflectance difference by subtraction of averaged spectrum from individual spectrum. To estimate correlation at different parts of cabbage and kale leaves, cross - correlation method was used. Differences between cabbage and kale leaves are clearly manifested in the green, red and near - infrared ranges. The percent reflectance of cabbage leaves in the NIR wavelength band was higher than that of kale leaves. Reflectance in the blade part was higher than in the vein part by 18%. Reflectance difference in the different parts of cabbage and kale leaves were clear in all of the wavelength bands. Standard deviation of reflectance difference in the vein part was greater for kale, while the value in the blade part was greater for cabbage leaves. Standard deviation of cross - correlation increased from 0.092 in the first sensor (UV/VIS) and 0.007 in the second sensor (NIR) to 0.099 and 0.015, respectively.

NIRS Analysis of Liquid and Dry Ewe Milk

  • Nunez-Sanchez, Nieves;Varo, Garrido;Serradilla-Manrique, Juan M.;Ares-Cea, Jose L.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1251-1251
    • /
    • 2001
  • The routine analysis of milk chemical components is of major importance both for the management of animals in dairy farms and for quality control in dairy industries. NIRS technology is an analytical technique which greatly simplifies this routine. One of the most critical aspects in NIRS analysis of milk is sample preparation and analysis modes which should be fast and straightforward. An important difficulty when obtaining NIR spectra of milk is the high water content (80 to 90%) of this product, since water absorbs most of the infrared radiation, and, therefore, limits the accuracy of calibrating for other constituents. To avoid this problem, the DESIR system was set up. Other ways of radiation-sample interaction adapted for liquids or semi-liquids exist, which are practically instantaneous and with limited or null necessity of sample preparation: Transmission and Folded Transmission or Transflectance. The objective of the present work is to compare the precision and accuracy of milk calibration equations in two analysis modes: Reflectance (dry milk) and Folded Transmission (liquid milk). A FOSS-NIR Systems 6500 I spectrophotometer (400-2500 nm) provided with a spinning module was used. Two NIR spectroscopic methods for milk analysis were compared: a) folded transmission: liquid milk samples in a 0.1 pathlength sample cell (ref. IH-0345) and b) reflectance: dried milk samples in glass fibre filters placed in a standard ring cell. A set of 101 milk samples was used to develop the calibration equations, for the two NIR analysis modes, to predict casein, protein, fat and dry matter contents, and 48 milk samples to predict Somatic Cell Count (SCC). The calibrations obtained for protein, fat and dry matter have an excellent quantitative prediction power, since they present $r^2$ values higher than 0.9. The $r^2$ values are slightly lower for casein and SCC (0.88 and 0.89 respectively), but they still are sufficiently high. The accuracy of casein, protein and SCC equations is not affected by the analysis modes, since their ETVC values are very similar in reflectance and folded transmission (0.19% vs 0.21%; 0.16% vs 0.19% and 55.57% vs 53.11% respectively), Lower SECV values were obtained for the prediction of fat and dry matter with the folded transmission equations (0.14% and 0.25% respectively) compared to the results with the reflectance ones (0.43% and 0.34% respectively). In terms of accuracy and speed of analytical response, NIRS analysis of liquid milk is recommended (folded transmission), since the drying procedure takes 24 hours. However, both analysis modes offer satisfactory results.

  • PDF

Development of real-time chemical properties analysis technique in paddy soil for precision farming (정밀농업을 위한 토양의 실시간 이화학 성분 분석 기술 개발)

  • Yun, Hyun-Woong;Choi, Chang-Hyun;Kim, Yong-Joo;Hong, Soon-Jung
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.1
    • /
    • pp.59-63
    • /
    • 2014
  • Precision farming aims at reduced environmental impacts with increased productivity. Soils are multi-functional media in which air, water and biota occur together and form an essential part of the landscape with a fundamental role in the environment. The requirement for herbicides and fertilizers can vary within a field in response to spatial differences in soil properties. Near infrared (NIR) spectroscopy is widely used today as a nondestructive analytical technique which is capable of determining a number of physio-chemical parameters. The objectives of this study were to develop optimal models to predict chemical properties of paddy soils by visible and NIR reflectance spectra. Total of 60 soil samples were collected in spring from 20 paddy fields within central regions in Korea. Reflectance spectra, moisture contents, pH, total nitrogen (N), organic matter, available phosphate ($P_2O_5$) of soil samples were measured. The reflectance spectra were measured in wavelength ranges of 400-2,500 nm with 2 nm interval. The method of partial least square (PLS) analysis was used to determine the soil properties. The PLS analyses showed good correlation between predicted and measured chemical properties of paddy soils in the wavelength range of 1,800-2,400 nm. Especially, it showed better performance than the previous results which used the entire wavelength range of the spectrophotometer, without considering the optimal wavelength of each soil properties.

Evaluation of Spectral Band Adjustment Factor Applicability for Near Infrared Channel of Sentinel-2A Using Landsat-8 (Landsat-8을 활용한 Sentinel-2A Near Infrared 채널의 Spectral Band Adjustment Factor 적용성 평가)

  • Nayeon Kim;Noh-hun Seong;Daeseong Jung;Suyoung Sim;Jongho Woo;Sungwon Choi;Sungwoo Park;Kyung-Soo Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.363-370
    • /
    • 2023
  • Various earth observation satellites need to provide accurate and high-quality data after launch. To maintain and enhance the quality of satellite data, it is crucial to employ a cross-calibration process that accounts for differences in sensor characteristics, such as the spectral band adjustment factor (SBAF). In this study, we utilized Landsat-8 and Sentinel-2A satellite imagery collected from desert sites in Libya4, Algeria3, and Mauritania2 among pseudo-invariant calibration sites to calculate and apply SBAF, thereby compensating the uncertainties arising from variations in bandwidths. We quantitatively compared the reflectance differences based on the similarity of bandwidths, including Blue, Green, Red, and both the near-infrared (NIR) narrow, and NIR bands of Sentinel-2A. Following the application of SBAF, significant results with reflectance differences of approximately 1% or less were observed for all bands except NIR. In the case of the Sentinel-2A NIR band, it exhibited a significantly larger bandwidth difference compared to the NIR narrow band. However, after applying SBAF, the reflectance difference fell within the acceptable error range (5%) of 1-2%. It indicates that SBAF can be applied even when there is a substantial difference in the bandwidths of the two sensors, particularly in situations where satellite utilization is limited. Therefore, it was determined that SBAF could be applied even when the bandwidth difference between the two sensors is large in a situation where satellite utilization is limited. It is expected to be helpful in research utilizing the quality and continuity of satellite data.

Effects of variety, region and season on near infrared reflectance spectroscopic analysis of quality parameters in red wine grapes

  • Esler, Michael B.;Gishen, Mark;Francis, I.Leigh;Dambergs, Robert G.;Kambouris, Ambrosias;Cynkar, Wies U.;Boehm, David R.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1523-1523
    • /
    • 2001
  • The wine industry requires practical methods for objectively measuring the composition of both red wine grapes on the vine to determine optimal harvest time; and of freshly harvested grapes for efficient allocation to vinery process streams for particular red wine products, and to determine payment of contract grapegrowers. To be practical for industry application these methods must be rapid, inexpensive and accurate. In most cases this restricts the analyses available to measurement of TSS (total soluble solids, predominantly sugars) by refractometry and pH by electropotentiometry. These two parameters, however, do not provide a comprehensive compositional characterization for the purpose of winemaking. The concentration of anthocyanin pigment in red wine grapes is an accepted indicator of potential wine quality and price. However, routine analysis for total anthocyanins is not considered as a practical option by the wider wine industry because of the high cost and slow turnaround time of this multi-step wet chemical laboratory analysis. Recent work by this ${group}^{l,2}$ has established the capability of near infrared (NIR) spectroscopy to provide rapid, accurate and simultaneous measurement of total anthocyanins, TSS and pH in red wine grapes. The analyses may be carried out equally well using either research grade scanning spectrometers or much simpler reduced spectral range portable diode-array based instrumentation. We have recently expanded on this work by collecting thousands of red wine grape samples in Australia. The sample set spans two vintages (1999 and 2000), five distinct geographical winegrowing regions and three main red wine grape varieties used in Australia (Cabernet Sauvignon, Shiraz and Merlot). Homogenized grape samples were scanned in diffuse reflectance mode on a FOSE NIR Systems6500 spectrometer and subject to laboratory analysis by the traditional methods for total anthocyanins, TSS and pH. We report here an analysis of the correlations between the NIR spectra and the laboratory data using standard chemometric algorithms within The Unscrambler software package. In particular, various subsets of the total data set are considered in turn to elucidate the effects of vintage, geographical area and grape variety on the measurement of grape composition by NIR spectroscopy. The relative ability of discrete calibrations to predict within and across these differences is considered. The results are then used to propose an optimal calibration strategy for red wine grape analysis.

  • PDF

Near infrared spectroscopy for classification of apples using K-mean neural network algorism

  • Muramatsu, Masahiro;Takefuji, Yoshiyasu;Kawano, Sumio
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1131-1131
    • /
    • 2001
  • To develop a nondestructive quality evaluation technique of fruits, a K-mean algorism is applied to near infrared (NIR) spectroscopy of apples. The K-mean algorism is one of neural network partition methods and the goal is to partition the set of objects O into K disjoint clusters, where K is assumed to be known a priori. The algorism introduced by Macqueen draws an initial partition of the objects at random. It then computes the cluster centroids, assigns objects to the closest of them and iterates until a local minimum is obtained. The advantage of using neural network is that the spectra at the wavelengths having absorptions against chemical bonds including C-H and O-H types can be selected directly as input data. In conventional multiple regression approaches, the first wavelength is selected manually around the absorbance wavelengths as showing a high correlation coefficient between the NIR $2^{nd}$ derivative spectrum and Brix value with a single regression. After that, the second and following wavelengths are selected statistically as the calibration equation shows a high correlation. Therefore, the second and following wavelengths are selected not in a NIR spectroscopic way but in a statistical way. In this research, the spectra at the six wavelengths including 900, 904, 914, 990, 1000 and 1016nm are selected as input data for K-mean analysis. 904nm is selected because the wavelength shows the highest correlation coefficients and is regarded as the absorbance wavelength. The others are selected because they show relatively high correlation coefficients and are revealed as the absorbance wavelengths against the chemical structures by B. G. Osborne. The experiment was performed with two phases. In first phase, a reflectance was acquired using fiber optics. The reflectance was calculated by comparing near infrared energy reflected from a Teflon sphere as a standard reference, and the $2^{nd}$ derivative spectra were used for K-mean analysis. Samples are intact 67 apples which are called Fuji and cultivated in Aomori prefecture in Japan. In second phase, the Brix values were measured with a commercially available refractometer in order to estimate the result of K-mean approach. The result shows a partition of the spectral data sets of 67 samples into eight clusters, and the apples are classified into samples having high Brix value and low Brix value. Consequently, the K-mean analysis realized the classification of apples on the basis of the Brix values.

  • PDF

DETERMINATION OF SUGARS AND ORGANIC ACIDS IN ORAGE JUICES USING NEAR INFRARED DIFFUSE REFLECTANCE SPECTROSCOPY

  • Tewari, Jagdish;Mehrotra, Ranajana;Gupta, Alka;Varma, S.P.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1522-1522
    • /
    • 2001
  • Beverages based on fruit juices are among the most popular commercially available drinks. There is an ever-increasing demand for these juices in the market. Orange juice is one of the most common as well as most favorite flavor. The fruit processing industries have a tremendous responsibility of quality control. For quality evaluation estimation of various components of the juice is necessary. Sucrose, glucose, fructose, citric acid and malic acid are the prime components of orange juice. Little information is available on analysis of orange juice. However, conventional and general wet chemistry procedures are currently being used which are no longer desired by the industry owing to the time involved, labor input and harmful chemicals required for each analysis. Need to replace these techniques with new, highly specific and automated sophisticated techniques viz. HPLC and spectroscopy has been realized since long time. Potential of Near Infrared Spectroscopy in quantitative analysis of different components of food samples has also been well established. A rapid, non-destructive and accurate technique based on Near Infrared Spectroscopy for determination of sugars and organic acids in orange juice will be highly useful. The current study is an investigation into the potential of Near Infrared Diffuse Reflectance Spectroscopy for rapid quantitative analysis of sucrose, glucose, fructose citric acid and malic acid in orange juice. All the Near Infrared measurements were peformed on a dispersive NIR spectrophotometer (ELICO 153) in diffuse reflectance mode. The spectral region from 1100 to 2500nm has been explored. The calibration has been performed on synthetic samples that are mixtures of sucrose, glucose, fructose, citric acid and malic acid in different concentration ranges typically encountered real orange juice. These synthetic samples are therefore considered to be representatives of natural juices. All the Near Infrared spectra of synthetic samples were subjected to mathematical analysis using Partial Least Square (PLS) algorithm. After the validation, calibration was applied to commercially available real samples and freshly squeezed natural juice samples. The actual concentrations were compared with those predicted from calibration curve. A good correlation is obtained between actual and predicted values as indicated by correlation coefficient ($R^2$) value, which is close to unity, showing the feasibility of the technique.

  • PDF

EVALUATION OF NIRS FOR ASSESSING PHYSICAL AND CHEMICAL CHARACTERISTICS OF LINEN WEFT YARN

  • Sharma, Hss;Kernaghan, K.;Whiteside, L.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1091-1091
    • /
    • 2001
  • Previous reports have shown that Near Infrared Spectroscopy (NIRS) can be used to assess physical and chemical properties of flax fibre and fabric quality. Currently, spinners assess yarn quality mainly based on strength and regularity measurements. There two key characteristics are influenced by quality of raw fibres used, especially the degree of rotting and strength. The aim of this investigation was to evaluate the use of NIRS for assessing quality of weft grade yarn available on the commercial market. In order to develop the NIR calibrations, a range of samples representing poor, medium and good quality weft yarn samples was included in the calibration and validation sample sets. The samples were analysed for physical and chemical parameters including caustic weight loss, fibre fractions, lipid, ash and minerals. A detailed protocol for assessing yarn quality has been developed to maximize the accuracy of the reflectance spectra. The development of partial least squares regression models and validation of the calibration equations using blind samples will be presented and discussed.

  • PDF

Quantitative In-line NIR measurements of papers

  • Schmidt, Angela;Weiler, Helmut
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1285-1285
    • /
    • 2001
  • For NIR measurements of papers normally diffuse reflectance accessories are used which can provide a large sampling area. The in-line process control FT-NIR spectrometer MATRIX-E enables the contactless measurement of paper samples of low silicone coat weights on label-stocks in a paper converting factory. For this study concentrations of silicone between 0 and 2 g/$m^2$ on various paper substrates were included in a quantitative method. The aim was to achieve an absolute value for the deviation from the target value of 1 g/$m^2$ during continuous movement of the paper with velocities around 400 numinute. Influences from the uncoated paper type due to supplier, color, opacity, area densities, pre-coating as well as different compounds of the agent silicone were investigated and it was found that all these papers can be represented in one PLS-model. Especially the fact that silicone as an element is present in clay coated papers is of no consequence to the measurements with MATRIX-E. Moreover during in-line installations the variation of the moisture contents in the moving paper due to variable machine velocities as well as the reflecting material of the cylinder have to be considered. It is shown that the result of the in-line calibration has the same prediction ability compared to lab scale results(Root Mean Square Error of Cross-Validation RMSECV = 0.034 g/$m^2$).

  • PDF

QUANTITATIVE IN-LINE NIR MEASUREMENTS OF PAPERS

  • Schmidt, Angela;Weiler, Helmut
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1193-1193
    • /
    • 2001
  • For NIR measurements of papers normally diffuse reflectance accessories are used which can provide a large sampling area. The in-line process control FT-NIR spectrometer MATRIX-E enables the contactless measurement of paper samples of low silicone coat weights on label-stocks in a paper converting factory. For this study concentrations of silicone between 0 and 2 g/㎡ on various paper substrates were included in a quantitative method. The aim was to achieve an absolute value for the deviation from the target value of 1 g/㎡ during continuous movement of the paper with velocities around 400 m/minute. Influences from the uncoated paper type due to supplier, color, opacity, area densities, pre-coating as well as different compounds of the agent silicone were investigated and it was found that all these papers can be represented in one PLS-model. Especially the fact that silicone as an element is present in clay coated papers is of no consequence to the measurements with MATRIX-E. Moreover during in-line installations the variation of the moisture contents in the moving paper due to variable machine velocities as well as the reflecting material of the cylinder have to be considered. It is shown that the result of the in-line calibration has the same prediction ability compared to lab scale results (Root Mean Square Error of Cross-Validation RMSECV = 0.034 g/㎡).

  • PDF