• Title/Summary/Keyword: Near

Search Result 22,491, Processing Time 0.05 seconds

Characterization of contribution of vehicle emissions to ambient NO2 using stable isotopes (안정동위원소를 이용한 이동오염원에 의한 대기 중 NO2의 거동특성 연구)

  • Park, Kwang-Su;Kim, Hyuk;Yu, Suk-Min;Noh, Seam;Park, Yu-Mi;Seok, Kwang-Seol;Kim, Min-Seob;Yoon, Suk Hee;Kim, Young-Hee
    • Analytical Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.17-23
    • /
    • 2019
  • Sources of NOx are both anthropogenic (e.g. fossil fuel combustion, vehicles, and other industrial processes) and natural (e.g. lightning, biogenic soil processes, and wildfires). The nitrogen stable isotope ratio of NOx has been proposed as an indicator for NOx source partitioning, which would help identify the contributions of various NOx sources. In this study, the ${\delta}^{15}N-NO_2$ values of vehicle emissions were measured in an urban region, to understand the sources and processes that influence the isotopic composition of NOx emissions. The Ogawa passive air sampler was used to determine the isotopic composition of $NO_2$(g). In urban tunnels, the observed $NO_2$ concentration and ${\delta}^{15}N-NO_2$ values averaged $3809{\pm}2656ppbv$ and $7.7{\pm}1.8$‰, respectively. The observed ${\delta}^{15}N-NO_2$ values are associated with slight regional variations in the vehicular $NO_2$ source. Both $NO_2$ concentration and ${\delta}^{15}N-NO_2$ values were significantly higher near the expressway ($965{\pm}125ppbv$ and $5.9{\pm}1.4$‰) than at 1.1 km from the expressway ($372{\pm}96ppbv$ and $-11.5{\pm}2.9$‰), indicating a high proportion of vehicle emissions. Ambient ${\delta}^{15}N-NO_2$ values were used in a binary mixing model to estimate the percentage of the ${\delta}^{15}N-NO_2$ value contributed by vehicular NOx emissions. The calculated percentage of the ${\delta}^{15}N-NO_2$ contribution by vehicles was significantly higher close to the highway, as observed for the $NO_2$ concentration and ${\delta}^{15}N-NO_2$.

A Critical Review about Application of IUCN Red List Criteria at Regional Level to Korean Endangered Vascular Plants Assessed by the Ministry of Environment, Republic of Korea (환경부 멸종위기 관속식물 지정 기준으로 사용된 IUCN 지역 적색목록 평가 분석)

  • Chang, Chin-Sung;Kwon, Shin-Young;Son, Sungwon;Kim, Hui
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.4
    • /
    • pp.361-377
    • /
    • 2018
  • The aim of this study was to examine whether the guideline by the Ministry of Environment (ME) successfully and appropriately applied the IUCN Red List criteria at regional level and the rare and endangered national list considered eligible. A certain number of vascular plants, which are widely distributed in the world or in east Asia, deemed to be ineligible for assessment at a regional level as Not Applicable category (NA), because it occurs at very low numbers in South Korea. Among 377 vascular plant taxa evaluated by the ME, NA included 238 species, which represented 63.1%. The number of synonymized species or illegitimate name species were 13 species, which accounted for 3.4%. 21 species (9.3%) were threatened at global level and 103 species were possibly candidates species list for Red List assessments at regional level in the near future. The proportion of NA or waiting list was 66.6% among the list assessed by the ME. The most common errors involved incorrectly application of species extinction in case of population extinction in South Korea to the assessment and provided incorrect interpretation of the Red List criteria at regional level. The most assessments proposed by ME were not backed up without quantitative data quality, justifications, and sources. It is suggested that the risk of extinction should be reassessed at least in the Korean peninsula within the light of their overall distribution including far eastern Russia and North eastern China in north and for Japan and Taiwan in south for regional assessment. The results obtained here using the IUCN criteria at regional level showed that the list proposed by the ME produced an overestimation of the number of threatened vascular plants. Also, the misapplication of the term 'species extinction' for regional assessment was open to some degree of subjectivity and misinterpretation.

The Effects of Increased Temperature on Seed Nutrition, Protein, and Oil Contents of Soybean [Glycine max (L.)] (온도 상승에 따른 콩 종실의 무기영양과 단백질 및 지방 함량 평가)

  • Lee, Yun-Ho;Cho, Hyeoun-Suk;Kim, Jun-Hwan;Sang, Wan-Gyu;Shin, Pyong;Baek, Jae-Kyeong;Seo, Myung-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.4
    • /
    • pp.331-337
    • /
    • 2018
  • The content of nutrients, proteins, and oils of crop seeds is affected by global climate change due to the increase in temperature. Information regarding the effects of increased temperature on soybean seed nutrition is limited despite its vital role in seed quality and food security. The objective of this study was to determine the effect of increasing temperature on seed nutrient, protein, and oil content in two soybean [Glycine max (L.) Merr] cultivars (Daewonkong and Pungsannamulkong during the reproductive period in a temperature-gradient chamber. Four temperature treatments, Ta (near ambient temperature), $Ta+1^{\circ}C$ (ambient temperature+$1^{\circ}C$), $Ta+2^{\circ}C$ (ambient temperature+$2^{\circ}C$), $Ta+3^{\circ}C$ (ambient temperature+$3^{\circ}C$), and $Ta+4^{\circ}C$ (ambient temperature+$4^{\circ}C$), were established by dividing the rows along the temperature gradient. At maturity, increased temperature did not significantly affect the concentration of P, K, Ca, and Mg. The protein and oil content was significantly correlated with temperature. At maturity, the protein content of DWK and PSNK was reduced at $Ta+4^{\circ}C$. The oil content was the highest at $Ta+4^{\circ}C$ in DWK, whereas it decreased in PSNK at $Ta+4^{\circ}C$. Consequently, the biochemical composition of soybean seeds changed with the increase in temperature. These results illustrate the effects of temperature on soybean seed nutrient, protein, and oil content, which can help improve soybean quality at different temperatures. Thus, the biochemical composition of crop seeds can be changed in accordance with nutritional requirements for the benefit of human health in the future.

Composting Method and Physicochemical Characteristics of By-products from Home Garden Plants and Small Herbivore Feces (옥수수 부산물과 토끼 분변의 이화학적 성분특성 및 퇴비 제조조건)

  • Kim, Dae-Gyun;Kim, Jin-Young;Lee, Won-Suk;Kim, Hye-Hyeong;Seo, Myung-Whoon;Park, In-Tae;Hyun, Junge;Yoo, Gayoung
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.695-703
    • /
    • 2018
  • This study was conducted to suggest a sustainable farming practice forresource recycling in vegetable gardens of North Korea. In North Korea, farmers are allowed to own private vegetable gardens less than $100m^2$. However, usage of fertilizers in private vegetable gardens is very limited due to economic sanctions by UN security council. If North and South Korea initiated the cooperative action in the near future, agricultural sector would be the highest priority cooperation area. Considering the current North Korean situation in agriculture, we would like to suggest a method for producing organic fertilizer manure. For raw materials for producing manure, we selected corn byproduct, which is the most abundant material, and rabbits' feces, which are easily obtained from individual private farms in North Korea. As we cannot get corn byproducts and rabbits' feces from North Korea, we prepared samples of corn byproducts and rabbits; feces from many places in South Korea. After statistical analysis of variance, there was no significant difference in the T-N contents of corn byproducts from Gyeonggi, Gangwon, Chungnam, Chungbuk, Jeollabuk and Gyeongsangnam-dos, which indicates that the fertilizing quality of corn byproducts does not vary significantly in the spatial scale of South. Korea. In this sense, if we use corn samples from Gyeonggi province, they would not be very different from those of North Korean regions. Physicochemical properties of rabbits' feces were different between those eating feed grains and those eating plants only. Hence, we used rabbits' feces of the rabbits from Yeonchun area, which were fed by plants only. Using three different mixing ratios of corn byproducts and rabbits' feces, composting was conducted for 60 days. The mixing ratio of 1:1 produced the manure with % T-N of 1.98% and OM/N ratio of 31.7 after 30 days of composting, which is comparable to the quality of commercial manure.

Numerical Analysis of Coupled Thermo-Hydro-Mechanical (THM) Behavior at Korean Reference Disposal System (KRS) Using TOUGH2-MP/FLAC3D Simulator (TOUGH2-MP/FLAC3D를 이용한 한국형 기준 처분시스템에서의 열-수리-역학적 복합거동 특성 평가)

  • Lee, Changsoo;Cho, Won-Jin;Lee, Jaewon;Kim, Geon Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.183-202
    • /
    • 2019
  • For design and performance assessment of a high-level radioactive waste (HLW) disposal system, it is necessary to understand the characteristics of coupled thermo-hydro-mechanical (THM) behavior. However, in previous studies for the Korean Reference HLW Disposal System (KRS), thermal analysis was performed to determine the spacing of disposal tunnels and interval of disposition holes without consideration of the coupled THM behavior. Therefore, in this study, TOUGH2-MP/FLAC3D is used to conduct THM modeling for performance assessment of the Korean Reference HLW Disposal System (KRS). The peak temperature remains below the temperature limit of $100^{\circ}C$ for the whole period. A rapid rise of temperature caused by decay heat occurs in the early years, and then temperature begins to decrease as decay heat from the waste decreases. The peak temperature at the bentonite buffer is around $96.2^{\circ}C$ after about 3 years, and peak temperature at the rockmass is $68.2^{\circ}C$ after about 17 years. Saturation of the bentonite block near the canister decreases in the early stage, because water evaporation occurs owing to temperature increase. Then, saturation of the bentonite buffer and backfill increases because of water intake from the rockmass, and bentonite buffer and backfill are fully saturated after about 266 years. The stress is calculated to investigate the effect of thermal stress and swelling pressure on the mechanical behavior of the rockmass. The calculated stress is compared to a spalling criterion and the Mohr-Coulumb criterion for investigation of potential failure. The stress at the rockmass remains below the spalling strength and Mohr-Coulumb criterion for the whole period. The methodology of using the TOUGH2-MP/FLAC3D simulator can be applied to predict the long-term behavior of the KRS under various conditions; these methods will be useful for the design and performance assessment of alternative concepts such as multi-layer and multi-canister concepts for geological spent fuel repositories.

Natural Heritage Values and Diversity of Geoheritages on Udo Island, Jeju Province (제주도 우도 지역 내 지질유산의 다양성과 가치)

  • Woo, Kyung Sik;Yoon, Seok Hoon;Sohn, Young Kwan;Kim, Ryeon;Lee, Kwang Choon;Lim, Jong Deock
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.1
    • /
    • pp.290-317
    • /
    • 2013
  • The objectives of this study are to investigate the natural heritage and scientific value of various geosites on Udo Island, and to evaluate the sites as natural monuments and as world natural heritage properties. Udo Island includes a variety of geoheritage sites. Various land forms formed during the formation of the Someori Oreum formed by phreatomagmatic eruptions. The essential elements for the formation of Udo Island are the tuff cone, overflowing lava and overlying redeposited tuff sediments. Various coastal land forms are also present. About 6,000 years B.C., when sea-level rose close to its present level due to deglaciation since the Last Glacial Maximum, carbonate sediments have been formed and deposited in shallow marine environment surrounding Udo Island. In particular, the very shallow broad shelf between Udo Island and Jeju Island, less than 20 m in water depth, has provided perfect conditions for the formation of rhodoids. Significant amounts of rhodoids are now forming in this area. Occasional transport of these rhodoids by typhoons has produced unique beach deposits which are entirely composed of rhodoids. Additional features are the Hagosudong Beach with its white carbonate sands, the Geommeole Beach with its black tuffaceous sands and Tolkani Beach with its basalt cobbles and boulders. Near Hagosudong Beach, wind-blown sands in the past produced carbonate sand dunes. On the northern part of the island, special carbonate sediments are present, due to their formation by composite processes such as beach-forming process and transportation by typhoons. The development of several sea caves is another feature of Udo Island, formed by waves and typhoon erosion within tuffaceous sedimentary rocks. In particular, one sea cave found at a depth of 10 m is very special because it indicates past sea-level fluctuations. Shell mounds in Udo Island may well represent the mixed heritage feature on this island. The most valuable geoheritage sites investigated around Udo Isalnd are rhodoid depostis on beaches and in shallow seas, and Someori Oreum composed of volcanoclastic deposits and basalt lava. Beach and shallow marine sediments, composed only of rhodoids, appear to be very rare in the world. Also, the natural heritage value of the Someori Oreum is outstanding, together with other phreatomagmatic tuff cones such as Suwolbong, Songaksan and Yongmeori. Consequently, the rhodoid deposits and the Someori Oreum are worth being nominated for UNESCO World Natural Heritage status. The designation of Someori Oreum as a Natural Monument should be a prerequisite for this procedure.

Technological Diversities Observed in Bronze Objects of the Late Goryo Period - Case Study on the Bronze Bowls Excavated from the Burial Complex at Deobu-gol in Goyang - (고려 말 청동용기에 적용된 제작기술의 다양성 연구 - 고양 더부골 고분군 출토 청동용기를 중심으로 -)

  • Jeon, Ik Hwan;Lee, Jae Sung;Park, Jang Sik
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.1
    • /
    • pp.208-227
    • /
    • 2013
  • Twenty-seven bronze bowls excavated from the Goryo burial complex at Deobu-gol were examined for their microstructure and chemical composition to characterize the bronze technology practiced by commoners at the time. Results showed that the objects examined can be classified into four groups: 1) objects forged out of Cu-near 22%Sn alloys and then quenched; 2) objects cast from Cu-below 10% Sn alloys containing lead; 3) objects cast from Cu-10%~20% Sn alloys containing lead and then quenched; 4) objects forged out of Cu-10~20% Sn alloys containing lead and then quenched. This study revealed that the fabrication technique as determined by alloy compositions plays an important role in bronze technology. The use of lead was clearly associated with the selection of quenching temperatures, the character of inclusions and the color characteristics of bronze surfaces. It was found that the objects containing lead were quenched at temperatures of $520^{\circ}{\sim}586^{\circ}C$ while those without lead were quenched at the range of $586^{\circ}{\sim}799^{\circ}C$. The presence of selenium in impurity inclusions was detected only in alloys containing lead, suggesting that the raw materials, Cu and Sn, used in making the lead-free alloys for the first group were carefully selected from those smelted using ores without lead contamination. Furthermore, the addition of lead was found to have significant effects on the color characteristics of the surface of bronze alloys when they are subjected to corrosion during interment. In leaded alloys, corrosion turns the surface light green or dark green while in unleaded alloys, corrosion turns the surface dark brown or black. It was found that in fabrication, the wall thickness of the bronze bowls varies depending on the application of quenching; most of the quenched objects have walls 1mm thick or below while those without quenching have walls 1mm thick or above. Fabrication techniques in bronze making usually reflect social environments of a community. It is likely that in the late Goryo period, experiencing lack of skilled bronze workers, the increased demand for bronze was met in two ways; by the use of chief lead instead of expensive tin and by the use of casting suitable for mass production. The above results show that the Goryo bronze workers tried to overcome such a resource-limited environment through technological innovations as apparent in the use of varying fabrication techniques for different alloys. Recently, numerous bronze objects are excavated and available for investigation. This study shows that with the use of proper analytical techniques they can serve as a valuable source of information required for the characterization of the associated technology as well as the social environment leading to the establishment of such technology.

A Study on the Slit Jade Earring Excavated in the Korean Peninsula (한반도 출토 결상이식(玦狀耳飾) 소고)

  • Lim, Seng Kyeong
    • Korean Journal of Heritage: History & Science
    • /
    • v.45 no.4
    • /
    • pp.4-21
    • /
    • 2012
  • Jade ornaments, which include slit earrings, scoop-shaped objects and tubular beads have been extensively identified in Northeast Asia, such as Korea, China, Japan and the Maritime Province of Siberia. Among them slit earrings are distributed in the whole area of Northeast Asia. Although this object shows the typological differences in accordance with the excavated region in detail, all of them are characterised by the slit on the centre of jade ring. The buried context and the shape of this object suggest that this artefact was the earring; thus it is named to 'slit earring'. Most of slit earrings of the Neolithic Age concentrate in Northeast China and the areas south of the Yangtze River, and the Japanese Archipelago. However, unfortunately, Slit earrings, which were produced in the tradition of the incipient and early phases of the Neolithic Age in Northeast Asia, have not been excavated in the Korean Peninsula. The number of slit earrings reported so far is eight, and especially until the 20th century, almost none was reported with its exact excavation location and only three of them are known as excavated through surface surveys and preliminary excavations. However, from the beginning of the 21st century onwards, the number of discovered slit earrings is increasing. Particularly, five pieces of this object uncovered in the 21st century are discovered in the official excavation; thus the exact archaeological context such as buried locations and chronologies could be estimated. By considering the buried context, slit earrings are associated with stone axes, which were produced in the incipient and early phase of the Neolithic Age in the Korean Peninsula. In addition, considering the number of unearthed objects is a few, it could be postulate that slit earring was the artefact that only a few persons, who had a special role in the society, could possess. However, slit jade earrings that have been excavated in the Korean Peninsula are extremely low in their number compared to the cases of its neighbouring countries such as China and Japan, and the researches on this subject have not been much conducted in Korea. Therefore, it is my supposition that slit earrings, which have been discovered in the Korean Peninsula, might be the imported item from the nearby areas. Particularly, the Southern Coast was closely connected with Japanese Islands and the Eastern Coast was interchanged with Northeast China or the Maritime Province of Siberia. Considering that excavations and researches on the Neolithic remains in the Korean Peninsula have not been sufficiently and actively conducted, it could be expected that the further investigations and researches will reveal the sufficient quantities of slit earrings in near future.

The First Discovery of Quaternary Fault in the Western Part of the South Yangsan Fault - Sinwoo Site (양산단층 남부 이서 지역에서 최초로 발견된 제4기 단층 - 신우지점)

  • Choi, Sung-Ja;Ghim, Yong Sik;Cheon, Youngbeom;Ko, Kyoungtae
    • Economic and Environmental Geology
    • /
    • v.52 no.3
    • /
    • pp.251-258
    • /
    • 2019
  • During the detailed geological survey around the southern Yangsan Fault, we newly found a Quaternary fault outcrop, which cuts unconsolidated sediments. The fault named the Sinwoo site, located in the Sinwoo pasture, Miho-ri, Duseo-myeon, Ulsan metropolitan city, is the first discovered Quaternary fault near the western part of the south Yangsan Fault. In this study, we provide information on characteristics of fault geometry and unconsolidated sediment at Sinwoo site based on the analysis data of topography, drainage, and lineament around the study site. The fault site is situated at pediment slope, but fan-shaped middle terrace, as well as thick sediment exposed at low terrace, indicates that the unconsolidated sediments have been deposited in the alluvial fan environment. The drainage develops to the third-order drainage system, and the first and the second drainage system meet at right angles to each other and form a radial drainage pattern. In addition, the NE-SW direction lineaments can be identified on the basis of the curvature of the river and the step of the topographic relief, running over the Sinwoo site. The fault of $N30-35^{\circ}E/79-82^{\circ}SE$ shows ~ 5.8 m apparent vertical offset and dominantly reverse-slip sense based on slickenline, rotation of pebbles, and drag folding at footwall. However, some discontinuous sediments observed in the footwall are interpreted as fissure-filling materials due to the strike-slip movement. Now, we are under multidisciplinary investigations of additional field survey and age dating in order to determine the evolution of Sinwoo site fault during the Quaternary.

Characteristics Analysis of Snow Particle Size Distribution in Gangwon Region according to Topography (지형에 따른 강원지역의 강설입자 크기 분포 특성 분석)

  • Bang, Wonbae;Kim, Kwonil;Yeom, Daejin;Cho, Su-jeong;Lee, Choeng-lyong;Lee, Daehyung;Ye, Bo-Young;Lee, GyuWon
    • Journal of the Korean earth science society
    • /
    • v.40 no.3
    • /
    • pp.227-239
    • /
    • 2019
  • Heavy snowfall events frequently occur in the Gangwon province, and the snowfall amount significantly varies in space due to the complex terrain and topographical modulation of precipitation. Understanding the spatial characteristics of heavy snowfall and its prediction is particularly challenging during snowfall events in the easterly winds. The easterly wind produces a significantly different atmospheric condition. Hence, it brings different precipitation characteristics. In this study, we have investigated the microphysical characteristics of snowfall in the windward and leeward sides of the Taebaek mountain range in the easterly condition. The two snowfall events are selected in the easterly, and the snow particles size distributions (SSD) are observed in the four sites (two windward and two leeward sites) by the PARSIVEL distrometers. We compared the characteristic parameters of SSDs that come from leeward sites to that of windward sites. The results show that SSDs of windward sites have a relatively wide distribution with many small snow particles compared to those of leeward sites. This characteristic is clearly shown by the larger characteristic number concentration and characteristic diameter in the windward sites. Snowfall rate and ice water content of windward also are larger than those of leeward sites. The results indicate that a new generation of snowfall particles is dominant in the windward sites which is likely due to the orographic lifting. In addition, the windward sites show heavy aggregation particles by nearby zero ground temperature that is likely driven by the wet and warm condition near the ocean.