• Title/Summary/Keyword: Nd-Fe-B-Cu Alloys

Search Result 23, Processing Time 0.027 seconds

Effect of Cu-Addition and Die-Upset Temperature on Texture in Die-Upset Nd-Lean Nd-Fe-B Alloys

  • Kwon, H.W.;Yu, J.H.
    • Journal of Magnetics
    • /
    • v.15 no.1
    • /
    • pp.32-35
    • /
    • 2010
  • The effects of Cu-addition and die-upset temperature on the texture in the die-upset Nd-lean $Nd_xFe_{93.5-(x+y)}-Cu_yGa_{0.5}B_6$ (x = 9-12, y = 0-2) alloys were investigated. The die-upset Cu-containing Nd-lean $Nd_{12}Fe_{81.5-y}-Cu_yGa_{0.5}B_6$ (y = 1, 2) alloys showed a considerable texture. Texture in the Nd-lean alloys developed through basal plane slip deformation. The Cu-addition reduced the melting point of grain boundary phase facilitating grain gliding during the die-upsetting, and providing a greater chance for the $Nd_2Fe_{14}B$ grains to meet the deformation conditions. Die-upsetting at higher temperature facilitated grain gliding and plastic deformation, thus enhancing texture.

Influence of Nd Content on Magnetic Properties of Nanocrystalline $\alpha$-(Fe, Co)-Based Nd-(Fe, Co)-B-Nb-Cu Alloys ($\alpha$-(Fe, Co)기 Nd-(Fe, Co)-B-Nb-Cu 초미세결정립합금의 자기특성에 미치는 Nd의 영향)

  • 조덕호;조용수;김택기;송민석;김윤배
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.3
    • /
    • pp.154-158
    • /
    • 1999
  • Magnetic properties and microstructure of nanocrystalline $\alpha$-(Fe, Co)-based Nd-(Fe, Co)-B-Nb-Cu alloys have been investigated. $Nd_x(Fe_{0.9}Co_{0.1})_{90-x}B_6Nb_3Cu_1$(x=2, 3, 4, 5, 6) alloys prepared by rapid solidification process show amorphous phase except the one with x=2. By a proper annealing, the amorphous in the alloy is changed to a nanocrystalline phase. It is confirmed that the nanocrystalline alloys are composed of $\alpha$-(Fe, Co) and $Nd_2(Fe, Co)_{14}B_1$ phase. The optimally annealed $Nd_3(Fe_{0.9}Co_{0.1})_87B_6Nb_3Cu_1$ alloy shows the highest remanence of 1.55 T. The coercivity increases with the increase of Nd content The maximum coercivity of 4.6 kOe is obtained from an optimally annealed $Nd_6(Fe_{0.9}Co_{0.1})_84B_6Nb_3Cu_1$ alloy, resulting in the maximum energy product of 10.6 MGOe.

  • PDF

Magnetic Propertes of $Nd_{x}{(Fe_{0.9}Co_{0.1})}_{90-x}B_{6}Nb_{3}Cu_{1}(x=\;3,\;4,\;5)$ Nanocrystalline Alloys ($Nd_{x}{(Fe_{0.9}Co_{0.1})}_{90-x}B_{6}Nb_{3}Cu_{1}(x=\;3,\;4,\;5)$ 초미세결정립합금의 자기특성)

  • 조용수;김만중;천정남;김택기;박우식;김윤배
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.880-894
    • /
    • 1995
  • Magnetic properties of $Nd_{x}{(Fe_{0.9}Co_{0.1})}_{90-x}B_{6}Nb_{3}Cu_{1}(x=\;3,\;4,\;5)$ rrelt-spun alloys with 6 at% B content were studied aiming for finding out a new $\alpha$-Fe based Nd-Fe-B nanocrystalline alloy with good hard magnetic properties. $Nd_{x}{(Fe_{0.9}Co_{0.1})}_{90-x}B_{6}Nb_{3}Cu_{1}$ melt-spun alloys prepared by RSP crystallized to nanocrystalline phase. An optimally annealed $Nd_{3}{(Fe_{0.9}Co_{0.1})}_{87}B_{6}Nb_{3}Cu_{1}$ melt-spun alloys had larger volume ratio of $\alpha$-Fe(Co) than that of higher Nd content alloy and showed high remanence of about 1.6 T. On the contrary, the increase of Nd content in $Nd_{x}{(Fe_{0.9}Co_{0.1})}_{90-x}B_{6}Nb_{3}Cu_{1}$ alloys gave rise to gradual increase of an amount of $Nd_{2}{(Fe,\;Co)}_{14}B$ phase and improved coercivity. An optimally annealed $Nd_{5}{(Fe_{0.9}Co_{0.1})}_{85}B_{6}Nb_{3}Cu_{1}$ alloy showed the most improved hard mag¬netic properties. The remanence, coercivityand energy product of the alloy were 1.35 T, 219 kA/m (2.75 kOe), and $129\;kJ/m^{3}$ (16.2 MGOe), respectively.

  • PDF

Magnetic Properties of ${\alpha}-Fe$ Based Nd-Fe-B Melt-Spun Alloys (${\alpha}-Fe$ 기 Nd-Fe-B 급속응고합금의 자기특성)

  • 조용수;김윤배;박우식;김희태;김창석;김택기
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.2
    • /
    • pp.122-125
    • /
    • 1994
  • The magnetic properties of Nd-Fe-B alloys of containing 4 at.% Nd have been studied for the development of new type rare-earth magnets. The amorphous phase of a melt-spun $Nd_{4}Fe_{85.5}B_{10.5}$ alloy is transformed into the phases which have a small amount of $Nd_{2}Fe_{14}B_{1}$ in ${\alpha}-Fe$ matrix by annealing above their crystallization temperature. The addition of Mo, Nb, V or Cu to $Nd_{4}Fe_{85.5}B_{10.5}$ alloy results in the reduction of grain size and the sub¬sequent improvement of the coercivity. The coercivity of $Nd_{4}Fe_{82}B_{10}M_{3}Cu_{1}$(M = Mo, Nb, V) alloys increases in the order of M = V < Nb < Mo and shows the highest value of 2.7 kOe when M = Mo. On the other hand, the rem¬anence of these alloys shows the opposite trend and the rn>st improved value of 1.35 T is observed when M = V.

  • PDF

INFLUENCE OF B AND Nd CONTENT ON THE MAGNETIC PROPERTIES OF ${\alpha}-Fe$ BASED NdFeB MAGNETS WITH ULTRAFINE GRAINS

  • Cho, Y.S.;Kim, Y.B.;Park, W.S.;Kim, C.S.;Kim, T.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.427-431
    • /
    • 1995
  • The influence of Nd and B contents on the magnetic properties and structures of ${\alpha}-Fe$ based Nd-(Fe,Co)-B-Mo-Cu alloys was investigated. $Nd_{4}{(Fe_{0.9}Co_{0.1})}_{92-x}B_{x}Mo_{3}Cu_{1}$ and $Nd_{x}{(Fe_{0.9}Co_{0.1})}_{86-x}B_{10}Mo_{3}Cu_{1}$ amorphous alloys prepared by rapid solidification process were crystallized to form nanocrystalline structure. The increase of B content in $Nd_{4}{(Fe_{0.9}Co_{0.1})}_{92-x}B_{x}Mo_{3}Cu_{1}$ nanocrystalline resulted in the change of stucture of soft phase in the sequence of ${\alpha}-Fe$->${\alpha}-Fe+Fe_{3}B$->$Fe_{3}B$. The coercivitis of the alloys were increased with increasing B content and was 263 kA/m at x=18. On the contrary, the remanence has shown an opposite trends. The increase of Nd content in $Nd_{x}{(Fe_{0.9}Co_{0.1})}_{86-x}B_{10}Mo_{3}Cu_{1}$ nanocrystalline containing ${\alpha}-Fe$ as main phase had no effect on the structure and improved coercivity up to 256 kA/m. However, the remanence was decreased from 1.4 T to 1.15 T according to the increase of Nd content.

  • PDF

Influence of Ga-Addition on the Manetic Properties of $\alpha-Fe$ Based Nd-Fe-B Alloy (Ga 첨가가 $\alpha$-Fe기 Nd-Fe-B 합금의 자기특성에 미치는 영향)

  • 조덕호;이병엽;조용수
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.1
    • /
    • pp.44-48
    • /
    • 1997
  • The nanocrystalline Nd-Fe-B alloys with low Nd content were prepared by rapid solidification technique. The alloys consist of both$\alpha$-Fe as the main phase and $Nd_2Fe_{14}B_1$ as a secondary phase and have an ultrafine grain structure of about 30 nm. The addition of Ga in $Nd_4Fe_{82}B_{10}Mo_3Cu_1$ alloy increases remanence up to 1.29 T and improves squareness. The nanocrystalline $Nd_5Fe_{81}B_9Mo_3Cu_1Ga_1$ alloy has a volume fraction of $Nd_2Fe_{14}B_1$ phase of around 35% due to the increase of Nd content and shows an improved coercivity. The remanence, coercivity and energy product of optimally annealed nanocrystalline $Nd_5Fe_{81}B_9Mo_3Cu_1Ga_1$ alloy are 1.24 T, 257.4 kA/m (3.23 kOe), and 100.3 kJ/ ㎥ (12.6 MGOe), respectively.

  • PDF

The Effects of Co-substitution on the Magnetic Properties of Nanocrystalline Nd-Fe-B based Alloy Containing α-Fe as Main Phase (Co 치환이 α-Fe기 초미세결정립 Nd-Fe-B계 합금의 자기특성에 미치는 영향)

  • Cho, D.H.;Cho, Y.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.1
    • /
    • pp.30-33
    • /
    • 2002
  • The Effects of Co-substitution in the nanocrystalline Nd-Fe-B-Mo-Cu alloys were investigated. $\alpha$-Fe based nanocrystalline Nd-Fe-B-Mo-Cu alloys were prepared by crystallization process of amorphous Nd-Fe-B-Mo-Cu alloy produced by rapid solidification process. The substitution of Co resulted in the decrease of grain size and improves the hard magnetic properties. The remanence, coercivity, and Curie temperature of nanocrystalline N $d_4$(F $e_{0.85}$ $Co_{0.15}$)$_{82}$ $B_{10}$M $o_3$Cu alloy showed more improved magnetic properties than those of Co-free alloy. The grain size was measured to be about 15 nm. The coercivity, remanence and maximum energy product were 239 kA/m, 1.41, and 103.5 kJ/ $m^3$, respectively, for the nanocrystalline N $d_4$(F $e_{0.85}$ $Co_{0.15}$)$_{82}$ $B_{10}$M $o_3$Cu alloy annealed for 0.6 ks at 640 $^{\circ}C$.