• Title/Summary/Keyword: Nd-Fe-B alloy

Search Result 83, Processing Time 0.021 seconds

Preparation of Nd2Fe14B Single Domain Particles from Nd-Fe-B Alloy Ingot Using a Combination of HDDR and Mechanical Milling

  • Lee, J.I.;Kwon, H.W.;Kang, Y.S.
    • Journal of Magnetics
    • /
    • v.13 no.3
    • /
    • pp.102-105
    • /
    • 2008
  • This study examined the feasibility of the combining HDDR-process (hydrogenation, disproportionation, desorption and recombination) with mechanical milling to prepare single domain $Nd_2Fe_{14}B$ particles from a Nd-Fe-B alloy ingot. The $Nd_{15}Fe_{77}B_8$ alloy was HDDR-treated and then subjected to a roller-milling. In the HDDR-treated $Nd_{15}Fe_{77}B_8$ alloy, very small $Nd_2Fe_{14}B$ grains comparable to their critical single domain size(0.3 ${\mu}m$) were observed. These fine individual grains were separated successfully along the grain boundaries by a roller-milling. The separated $Nd_2Fe_{14}B$ grains were found to be single domain particles. These results suggest that single domain particles of the $Nd_2Fe_{14}B$ phase can be prepared from a Nd-Fe-B ingot alloy by combining a HDDR-process with mechanical milling.

TMA Study on Phase Evolution During Hydrogen-assisted Disproportionation of Nd-Fe-B Alloy

  • Kwon, H.W.;Yu, J.H.
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.229-233
    • /
    • 2011
  • Phase evolution during the hydrogen-assisted disproportionation of $Nd_{12.5}Fe_{80.6}B_{6.4}Ga_{0.3}Nb_{0.2}$ alloy was investigated mainly by using a magnetic balance-type thermomagnetic analyser (TMA). In order to avoid any undesirable phase change in the course of heating for TMA, a swift TMA technique with very high heating rate (around 2 min to reach $800^{\circ}C$ from room temperature) was adopted. The hydrided $Nd_{12.5}Fe_{80.6}B_{6.4}Ga_{0.3}Nb_{0.2}$ alloy started to be disproportionated in hydrogen from around $600^{\circ}C$, and the alloy after the early disproportionation (from 600 to $660^{\circ}C$) has been partially disproportionated. The partially disproportionated alloy consisted of a mixture of $NdH_x$, $Fe_3B$, ${\alpha}$-Fe, and the remaining undisproportionated $Nd_2Fe_{14}BH_x$-phase. During the subsequent heating to $800^{\circ}C$ in hydrogen, two additional phases of $Fe_{23}B_6$ and $Fe_2B$ were formed, and the material consisted of a mixture of $NdH_x$, $Fe_{23}B_6$, $Fe_3B$, $Fe_2B$, and ${\alpha}$-Fe phases. During the subsequent isothermal holding at $800^{\circ}C$ for 1 hour, the phase constitution was further changed, and one additional unknown magnetic phase was formed. Eventually, the fully disproportionated $Nd_{12.5}Fe_{80.6}B_{6.4}Ga_{0.3}Nb_{0.2}$ alloy consisted of $NdH_x$, $Fe_{23}B_6$, $Fe_3B$, $Fe_2B$, ${\alpha}$-Fe, and one additional unknown magnetic phase.

Compositional Effect on the Magnetic Properties of Nd-Fe-Co-B and Nd-Fe-Co-Zr-B Bonded Magent (합금조성에 따른 Nd-Fe-Co-B 및 Nd-Fe-Co-Zr-B계 본드자석의 자기특성)

  • 최승덕;이우영;양충진
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.2
    • /
    • pp.60-68
    • /
    • 1991
  • In compacting the melt-spun $Nd_{14}Fe_{76}Co_{4}B_{6}$ and $Nd_{10.5}Fe_{79}Co_{2}Zr_{15}B_{7}$ magnetic powders. the difference in composition induces a different behavior of closed packing rate as a function of aspect ratio of the powders. The $Nd_{10.5}Fe_{79}Co_{2}Zr_{1.5}B_{7}$ alloy having a low Co/Fe ratio (low density) shows the better green density to have an enhanced closed packing rate. An empirical power equation relating the green density with the compacting pressure was obtained such as ${\phi}(g/cm^{2})=5.2~5.6{\times}P^{0.045~0.065}(ton/cm^{2})$. The $Nd_{14}Fe_{76}Co_{4}B_{6}$ alloy having a high Nd/Fe ratio possesses much finer grain size(50~60 nm) than that of $Nd_{10.5}Fe_{79}Co_{2}Zr_{1.5}B_{7}$ alloy and shows the higher coercivity($iH_{c}=14~15kOe$). The higher Nd/Fe ratio in the melt-spun Nd-Fe-Co-B alloy, where the domain wall pinning mechanism was found to be predominant, assists the formation of Nd-rich grain boundary phase acting as a pinning site. The grain boundary ranges over $12~16\;{\AA}$ thick in the Nd-Fe-Co-B alloy while it ranges over $8~12\;{\AA}$ thick in the Nd-Fe-Co-Zr-B alloy.

  • PDF

Texture Study in HDDR-treated Nd-Fe-B-type Particles

  • Kim, Jung-Hwan;Kwon, H.W.
    • Journal of Magnetics
    • /
    • v.10 no.4
    • /
    • pp.152-156
    • /
    • 2005
  • Effects of the disproportionating hydrogen pressure and alloy composition on the texture in the HDDR-treated Nd-Fe-B particles were examined using the $Nd_{12.6}Fe_{81.4}B_6$ and $Nd_{12.6}Fe_{68.7}B_6Co_{11.0}Ga_{1.0}Zr_{0.l}$ alloys. Disproportionation kinetics of the $Nd_2Fe_{14}B$ phase in the Nd-Fe-B alloy was retarded significantly by the addition of Co, Ga and Zr. The retarded disproportionation kinetics of the $Nd_2Fe_{14}B$ phase ensured a wider processing win­dow in terms of disproportionating hydrogen pressure for achieving a texture in the HDDR-treated Nd-Fe-B alloy particles.

Influence of Ga-Addition on the Manetic Properties of $\alpha-Fe$ Based Nd-Fe-B Alloy (Ga 첨가가 $\alpha$-Fe기 Nd-Fe-B 합금의 자기특성에 미치는 영향)

  • 조덕호;이병엽;조용수
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.1
    • /
    • pp.44-48
    • /
    • 1997
  • The nanocrystalline Nd-Fe-B alloys with low Nd content were prepared by rapid solidification technique. The alloys consist of both$\alpha$-Fe as the main phase and $Nd_2Fe_{14}B_1$ as a secondary phase and have an ultrafine grain structure of about 30 nm. The addition of Ga in $Nd_4Fe_{82}B_{10}Mo_3Cu_1$ alloy increases remanence up to 1.29 T and improves squareness. The nanocrystalline $Nd_5Fe_{81}B_9Mo_3Cu_1Ga_1$ alloy has a volume fraction of $Nd_2Fe_{14}B_1$ phase of around 35% due to the increase of Nd content and shows an improved coercivity. The remanence, coercivity and energy product of optimally annealed nanocrystalline $Nd_5Fe_{81}B_9Mo_3Cu_1Ga_1$ alloy are 1.24 T, 257.4 kA/m (3.23 kOe), and 100.3 kJ/ ㎥ (12.6 MGOe), respectively.

  • PDF

Study on the HDDR Characteristics of the Nd-Fe(-Co)-B(-Ga-Zr)-type Alloys

  • Shon, S.W.;Kwon, H.W.;Kang, D.I.;Kim, Yoon.B.;Jeung, W.Y.
    • Journal of Magnetics
    • /
    • v.4 no.4
    • /
    • pp.131-135
    • /
    • 1999
  • The HDDR characteristics of the Nd-Fe-B-type isotropic and anisotropic HDDR alloys were investigated using three types of alloys: alloy A $(Nd_{12.6}Fe_{81.4}B_6), alloy B (Nd_{12.6}Fe_{81.3}B_6Zr_{0.1}), and alloy C (Nd_{12.6}Fe_{68.8}Co_{11.5}B_6Ga_{1.0}Zr_{0.1}$). The alloy A is featured with the isotropic HDDR character, while alloy B and C are featured with the anisotropic HDDR character. Hydrogenation and disproportionation characteristics of the alloys were examined using DTA under hydrogen gas. Recombination characteristics of the alloys were examined by observing the coercivity variation as a function of recombination time. The present study revealed that the alloy C exhibits slightly higher hydrogenation and disproportionation temperatures compared to the alloy A and B. Recombination of the anisotropic alloy B and C takes place more rapidly with respect to the isotropic alloy A. The intrinsic coercivities of the recombined materials rapidly increased with increasing the recombination time and then showed a peak, after which the coercivities decreased gradually. The degraded coercivity was, however, recovered significantly on prolonged recombination treatment. Compared with the isotropic HDDR alloy A the anisotropic HDDR alloy B and C are notable for their greater recovery of coercivity. The significant recovery of coercivity was accounted for the in terms of the development of well-defined smooth grain boundary between the recombined grains on prolonged recombination.

  • PDF

A Study on the Magnetic Properties and Solid-HDDR Characteristics of Nd-Fe-B-type Alloys

  • Shon, S.W.;Kwon, H.W.
    • Journal of Magnetics
    • /
    • v.4 no.2
    • /
    • pp.46-51
    • /
    • 1999
  • A solid-HDDR characteristics of the Nd-Fe-B-type alloys magnetic properties of the solid-HDDR treated materials have been investigated using three types of alloys; $Nd_{15}Fe_{77}B_8 (alloy A), Nd_{16}Fe_{75.9}B_8Zr_{0.1}(alloy B), and Nd_{12.6}Fe_{68.7}Co_{11.6}B_8Ga_{1.0}Zr_{0.1} $(alloy C). It has been found that the four-components alloy B and six-components alloy C have showed higher hydrogenation temperatures than the ternary alloy A. The alloys A and B appeared to absorb more hydrogen gas more rapidly as well compared to the alloy C. The disproportionation temperature of hydrogenated materials was exhibited no significant difference among the alloys. The thermal stability of the hydrided materials of the three types of alloys was found to become more stable in order of number of components. The disproportionation and the recombination kinetics were significantly sluggish in the solid-HDDR manner with respect to the conventional manner. Some degree of anisotropic nature was found to exist in the ingot and this anisotropic nature was retained even after the solid-HDDR treatment. It was suggested the solid-HDDR treatment may possibly be used for a preparation of an isotropic or anisotropic Nd-Fe-B-type cast magnets.

  • PDF

Magnetic Properties of $\alpha$-Fe Based Nd-Fe-B Nanocrystalline with High Remanence (고잔류자화 $\alpha$-Fe기 Nd-Fe-B 초미세결정립 합금의 자기특성)

  • 조용수;김윤배;박우식;김창석;김택기
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.1
    • /
    • pp.38-41
    • /
    • 1995
  • The effects of Nb and Cu additives as will as substitutional Co into $Nd_{4}Fe_{85.5}B_{10.5}$ melt-spun alloy were studied aiming for finding a $\alpha$-Fe based Nd-Fe-B composite alloys with high energy product. The addition of Nb and Cu to $Nd_{4}Fe_{85.5}B_{10.5}$ decreased the average grain size and increased the coercivity up to 207kA/m(2.6kOe), Further-more, the substitution of Co for Fe in $Nd_{4}Fe_{82}B_{10}Nb_{3}Cu_{1}$ alloy resulted in the decrease of the average grain size (<20nm) and improved the hard magnetic properties. The remanence, coercivity and energy product of optimally annealed $Nd_{4}Fe_{74}Co_{8}B_{10}Nb_{3}Cu_{1}$ alloy were 1.345, 219kA/m(2.75kOe) and $95.5kJ/m^{3}$(12MGOe), respectively.

  • PDF

Effect of Ga, Nb Addition on Disproportionation Kinetics of Nd-Fe-B Alloy

  • Kwon, H.W.;Yu, J.H.
    • Journal of Magnetics
    • /
    • v.14 no.4
    • /
    • pp.150-154
    • /
    • 2009
  • The effect of Ga and, Nb addition on the kinetics and mechanism of the disproportionation of a Nd-Fe-B alloy were investigated by isothermal thermopiezic analysis (TPA) using $Nd_{12.5}Fe_{(81.1-(x+y))}B_{6.4}Ga_xNb_y$ (x=0 and 0.3, y= 0 and 0.2) alloys. The addition of Ga and Nb retarded the disproportionation kinetics of the Nd-Fe-B alloy significantly, and increased the activation energy of the disproportionation reaction. The disproportionation kinetics of the $Nd_{12.5}Fe_{(81.1-(x+y))}B_{6.4}Ga_xNb_y$ alloys measured under an initial hydrogen pressure of 0.02 MPa were fitted to a parabolic rate law. This suggested that during the disproportionation of $Nd_{12.5}Fe_{(81.1-(x+y))}B_{6.4}Ga_xNb_y$ alloys with an initial hydrogen pressure of 0.02 MPa, a continuous disproportionation product is formed and the overall reaction rate is limited by the diffusion of hydrogen atoms (or ions).

Influence of Nd Content on Magnetic Properties of Nanocrystalline $\alpha$-(Fe, Co)-Based Nd-(Fe, Co)-B-Nb-Cu Alloys ($\alpha$-(Fe, Co)기 Nd-(Fe, Co)-B-Nb-Cu 초미세결정립합금의 자기특성에 미치는 Nd의 영향)

  • 조덕호;조용수;김택기;송민석;김윤배
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.3
    • /
    • pp.154-158
    • /
    • 1999
  • Magnetic properties and microstructure of nanocrystalline $\alpha$-(Fe, Co)-based Nd-(Fe, Co)-B-Nb-Cu alloys have been investigated. $Nd_x(Fe_{0.9}Co_{0.1})_{90-x}B_6Nb_3Cu_1$(x=2, 3, 4, 5, 6) alloys prepared by rapid solidification process show amorphous phase except the one with x=2. By a proper annealing, the amorphous in the alloy is changed to a nanocrystalline phase. It is confirmed that the nanocrystalline alloys are composed of $\alpha$-(Fe, Co) and $Nd_2(Fe, Co)_{14}B_1$ phase. The optimally annealed $Nd_3(Fe_{0.9}Co_{0.1})_87B_6Nb_3Cu_1$ alloy shows the highest remanence of 1.55 T. The coercivity increases with the increase of Nd content The maximum coercivity of 4.6 kOe is obtained from an optimally annealed $Nd_6(Fe_{0.9}Co_{0.1})_84B_6Nb_3Cu_1$ alloy, resulting in the maximum energy product of 10.6 MGOe.

  • PDF