• Title/Summary/Keyword: Nd Magnet

Search Result 264, Processing Time 0.025 seconds

Dynamic Analysis of Line Start Permanent Magnet Motor Considering Magnetization (착자를 고려한 Line Start Permanent Magnet Mortor의 동특성 해석)

  • Lee, C.G.;Kwon, B.I.
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.15-17
    • /
    • 2002
  • In this paper, we analyse the dynamic characteristic of 3-phase line start permanent magnet motor considering magnetization. Magnetization vector of NdFeB is obtained from the 2-D FEM magnetization analysis. And comparing the proposed analysis with conventional analysis method, we know that it is necessary to consider magnetization in dynamic analysis.

  • PDF

The Effect of Magnetic Field Treatment on Enhanced Exchange Coupling of $Nd_{2}Fe_{14}B/Fe_{3}B$ Magnet (자장중 열처리에 의한 $Nd_{2}Fe_{14}B/Fe_{3}B$ 초미세립 복합자성상의 자기특성 향상)

  • 박언병;양충진
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.2
    • /
    • pp.80-85
    • /
    • 1996
  • An externally applied magnetic field during annealing the $Nd_{2}Fe_{14}B/Fe_{3}B$ based spring magnet was found to enhance the exchange coupling between the hard and soft magnetic grains. More than 30 % increase in remanence values for melt-spun $Nd_{4}Fe_{73.5}Co_{3}(Hf_{1-x}-Ga_{x})B_{18.5}$(x=0, 0.5, 1.0) alloys was resulted from uniform distribution of $Fe_{3}B$, $\alpha$-Fe as well as $(Nd_{2}Fe_{14}B)$, and also from reduced grain size of those phases by 20 %. The result also showed that there is an optimum grain size exhibiting a high coercivity value which will be discussed in terms of previously simulated exchange coupling parameter.

  • PDF

Design and Small-sized Frame of The Permanent Magnet Motor from New Material of Magnetic (신 자성재질을 통한 영구자석형 전동기의 설계 및 소형화 방안)

  • Kim, Choong-Sik;Won, Sung-Hong;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.721-722
    • /
    • 2006
  • Industrialization and technique consequently in quick development the motor field small size and light weight, high efficiency and highly energy density in necessity. The permanent magnet motor small size and the research regarding the research of the torque and efficiency is coming to be active. From this paper the research regarding the quality permanent magnet motor and analysis and it was developed recently the NdFeB anisotropic bond magnet which is a high magnetic force material use, from the hazard which accomplishes power density it is high permanent magnet motor of small size and light weight it researched. The Finite Element Method it led and motor optimization. Also the experiment and analysis permanent magnet motor it is improved the motor and result it led and different it compared.

  • PDF

Development of a hybrid-type magnet for MAGLEV vehicle using permanent magnet (영구자석을 이용한 상전도 자기 부상 열차용 전자석 개발 연구)

  • Lee, Suk-Won;Shin, Pan-Seok;Chung, Hyun-Kap;Kim, Bong-Seop
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.308-311
    • /
    • 1998
  • Experiments and design efforts have been made to develope a hybrid-type magnet for magnetically levitated(MAGLEV) vehicle using NdFeB permanent magnet. The permanent magnet, which embedded in both poles of the magnet, has been designed, analyzed using FEM program. The model is manufactured and tested to verify its performance.

  • PDF

Design of Neodymium Permanent Magnetic Core using FEM (유한요소법을 이용한 네오디움 영구자석의 코어 설계)

  • Hur, Kwan-Do;Ye, Sang-Don
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.70-75
    • /
    • 2014
  • Permanent magnets have recently been considered as device that can be used to control the behavior of mechanical systems. Neodymium magnets, a type of permanent magnet, have been used in numerous mechanical devices. These are permanent magnets made from an alloy of neodymium, iron, and boron to form the Nd2Fe14B tetragonal crystalline structure. The magnetic selection, magnet core design and mechanical errors of the magnetic component can affect the performance of the magnetic force. In this study, the coercive force, residual induction, and the dimensions of the design parameters of the magnet core are optimized. The design parameters of magnet core are defined as the gap between the magnet and the core, the upper contact radius, and the lower thickness of the core. The force exercised on a permanent magnet in a non-uniform field is dependent on the magnetization orientation of the magnet. Non-uniformity of the polarization direction of the magnetic has been assumed to be caused by the angular error in the polarization direction. The variation in the magnetic performance is considered according to the center distance, the tilt of the magnetic components, and the polarization direction. The finite element method is used to analyze the magnetic force of an optimized cylindrical magnet.