• Title/Summary/Keyword: Nd 동위원소

Search Result 67, Processing Time 0.021 seconds

Ln-resin and HIBA Method for La-Ce and Sm-Nd Isotope Measurement (La-Ce 및 Sm-Nd 동위원소계 측정을 위한 란탄-레진법과 HIBA(Hydroxy Isobutyric Acid)분리법의 상호비교)

  • Lee, Seung-Gu;Lee, Hyomin;Asahara, Yoshihiro;Lee, Mi-Jeong;Choo, MiKyeong;Lee, SeungRyeol
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.431-439
    • /
    • 2012
  • A column chemistry is the most useful tools for isolating the elements of interest in isotope geochemistry. Here we introduce the chemical experimental procedure for Sm, Nd, La and Ce separation such as Teflon powder or Ln-resin method using HDEHP of KIGAM, KBSI, KOPRI and ${\alpha}$-HIBA(${\alpha}$-Hydroxy Isobutyric acid) method of Nagoya University, Japan. This technical report will provide an useful information in selecting the experiment method for rare earth element isotope system study such as Sm-Nd and La-Ce isotope system.

Burnup Measurement of Irradiated Uranium Dioxide Fuel by Chemical Methods (화학적 방법에 의한 핵연료의 연소도 측정)

  • Kim, Jung-Suk;Han, Sun-Ho;Suh, Moo-Yul;Joe, Kih-Soo;Eom, Tae-Yoon
    • Nuclear Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.277-286
    • /
    • 1989
  • Destructive methods are used for the turnup determination of an irradiated PWR fuel. One of the methods includes U, Pu, Nd-148 and Nd-(145+146) determination by an isotope dilution mass spectrometry using triple spikes (U-233, Pu-242 and Nd-150). The method involves two sequential ion exchange resin separation procedures. Pu is eluted from the first anion exchange resin column (Dowex AG 1$\times$8) with 12 M HCl-0.1 M HI mixed solution, followed by U elution with 0.1 M HCl. Nd is isolated from other fission products on the second anion exchange resin column (Dowex AG 1$\times$4) with a nitric acid-methanol eluent. Each fraction is analysed by thermal ionization mass spectrometry. The difference between Nd-148 and Nd-(145+146) method is found with an average 2.07%. The results are compared with those by the heavy element method using U and Pu isotopes and by the destructive y-spectrometric measurement of Cs-137. The dependences of isotope composition of U and Pu on burn-up, and correlation between those isotopes are illustrated graphically.

  • PDF

Geochemistry and Sm-Nd isotope systematics of Precambrian granitic gneiss and amphibolite core at the Muju area, middle Yeongnam Massif (영남육괴 중부 무주 지역에 위치하는 선캠브리아기 화강편마암 및 앰피볼라이트 시추코아의 Sm-Nd 연대 및 지구화학적 특징)

  • Lee Seung-Gu;Kim Yongje;Kim Kun-Han
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.3 s.41
    • /
    • pp.127-140
    • /
    • 2005
  • The Samyuri area of Jeoksang-myeon, Muju-gun at the Middle Yeongnam Massif consists of granitic gneiss, porphyroblastic gneiss and leucocratic gneiss, which correspond to Precambrian Wonnam Series. Here we discuss a geochemical implication of the data based on major element composition, trace element, rare earth element (REE), Sm-Nd and Rb-Sr isotope systematics of the boring cores in the granite gneiss area. The boring cores are granitic gneiss (including biotite gneiss) and amphibolite. The major and trace element compositions of granitic gneiss and amphibolite suggest that the protolith belongs to TTG (Tonalite-Trondhjemite-Granodiorite) and tholeiitic series, respectively. Chondrte-normalized REE patterns vary in LREE, HREE and Eu anomalies. The granitic gneiss and amphibolite have Sm-Nd whole rock age of $2,026{\pm}230(2{\sigma})$ Ma with an initial Nd isotopic ratio of $0.50979{\pm}0.00028(2{\sigma})$ (initial ${\epsilon}_{Nd}=-4.4$), which suggests that the source material was derived from old crustal material. Particularly, this initial ${\epsilon}$ Nd value belongs to the range of the geochemical evolution of Archean basement in North-China Craton, and also corresponds to the initial Nd isotope evolution line by Lee et al. (2005). In addition, chondrite-normalized REE pattern and initial Nd value of amphibolite are very similar to those of juvenile magma in crustal formation process.

Geochemical Application for Clarifying the Source Material of the Earthenware: A Preliminary Study for Archaeological Application of Geochemical Tool (도토기의 태토(기원물질)산지를 추적하기 위한 지구화학적 응용연구: 지구화학연구기법의 고고학적 응용을 위한 기초연구)

  • Lee, Seung-Gu;Lee, Kil-Yong;Yoon, Yoon-Yeol;Yang, Myeong-Kwon;Kim, Kyu-Ho;Lee, Sung-Joo;Ahn, Sang-Doo
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.181-197
    • /
    • 2010
  • This study is for finding a geoscientific factor for clarifying the source soil of the ancient earthenware finding. The used samples were the earthenware, soil and rocks, which were collected at the Gyeongju, Gyeongsan and Haman area. The chemical and mineralogical study for the samples were carried out for understanding the change of mineralogical and chemical composition among them. The mineralogical compositions of the earthenware are different from those of the soils from the surrounding area, which suggests that the mineralogical approach for clarifying the source soil of the earthenware should be difficult. Major element compositions of the earthenware also are different from those of the surrounding soils, which suggests that the comparison of the chemical composition using the major elements might be difficult for deducing the source soil of the earthenware. However, PAAS-normalized rare earth element (REE) patterns and Nd model ages among the rock, soils and earthenware from the same sampling sites show similar characteristics one another compared to those of the major element compositions. Nd-Sr isotopic systematics among the earthenware, soils and rocks also show a close relationship. Our results suggest that REE and Nd-Sr isotope geochemistry might be more useful than the other geochemical technique in clarifying the source soils of the ancient earthenware.

Principles of Re-Os Isotopic System and Dating the Age of the Subcontinental Lithospheric Mantle Beneath Korean Peninsula (Re-Os 동위원소 시스템의 원리와 한반도 하부지각맨틀의 연령)

  • Lee Seung-Ryeol
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.2 s.44
    • /
    • pp.106-117
    • /
    • 2006
  • Re-Os isotopic system, based on the long-lived $\beta^-$ transition of $^{187}Os(\lambda=1.67\times10^{-11}year^{-1})$ is being widely used in cosmochemistry and geochemistry. Along with the development of elemental separation and mass-spectrometric technique, the Re-Os isotopic system, like Sm-Nd, Rb-Sr, U-Th-Pb isotopic system, is now conventionally applied as a useful tool for absolute dating and isotoptc tracers. This paper introduces brief principles of Re-Os isotopic system and presents the general methodology fur dating the formation age of the subcontinental lithospheric mantle, based on the Re-Os isotopic data of the mantle xeonliths from South Korea.

SHRIMP Zircon U-Pb Geochronology, Geochemistry and Sr-Nd Isotopic Study of the Cheongju granitoid rocks (청주 화강암의 SHRIMP 저어콘 U-Pb 연대, 지구화학 및 Sr-Nd 동위원소 연구)

  • Cheong, Won-Seok;Kim, Yoon-Sup;Na, Ki-Chang
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.191-206
    • /
    • 2011
  • The emplacement ages, whole-rock geochemistry and Sr-Nd isotopic compositions of granitoid rocks from Cheongju area, South Korea, were investigated for delineating their petrogenetic link to the Jurassic Daebo granitoid rocks. Zircon crystals were collected from the diorite, biotite granite and acidic dyke samples in a single outcrop. Cross-cutting relationships show that the emplacement of diorite was postdated by the intrusion of biotite granite. Both rocks have been subsequently intruded by acidic dyke. The U-Pb isotopic compositions of zircon from the diorite, biotite granite, and acidic dyke were measured using a SHRIMP-II ion microprobe, yielding the crystallization ages of $174{\pm}2Ma$, $170{\pm}2Ma$, and $170{\pm}5Ma$, respectively, with 95% confidence limits ($t{\sigma}$). The emplacement ages are consistent with those determined from the above relative ages. The major and trace element patterns of the rocks are consistent with those of the Jurassic Daebo granitoid rocks, possibly suggesting a subduction-related I-type granite. The geochemical signature is, however, betrayed by the Sr and Nd isotopic compositions of these rocks. The isotopic signatures suggest that the rocks were produced either by the partial melting of lower-crust or by the mantle-derived magma contaminated by the basement rocks during its ascent and/or emplacement. In addition, the inherited ages of zircons of the rocks (ca. 2.1, 1.8, 0.8 and 0.4 Ga) suggest a possible assimilation with crustal rocks from the Gyeonggi massif and Ogcheon metamorphic belt.

A Distinctive Chemical Composition of the Tektites from Thailand and Vietnam, and Its Geochemical Significance (타이와 베트남에서 수집된 텍타이트의 화학조성과 지구화학적 의의)

  • Lee, Seung-Gu;Tanaka, Tsuyoshi;Asahara, Yoshihiro;Minami, Masayo
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.281-295
    • /
    • 2017
  • We determined chemical compositions like abundance of major and trace elements, Sr and Nd isotope compositions for two tektites from the Thailand and Vietnam. Their chemical compositions are similar to each other, and seem to be similar to those of PAAS (Post Archean Australian Shale) rather than upper continental crust. In particular, primitive mantle-normalized spider diagrams and chondrite-normalized REE patterns for two tektites are the same, suggesting that they might be derived from the same source material. The $^{87}Sr/^{86}Sr$ and $^{143}Nd/^{144}Nd$ ratios from Thailand tektite are $0.718870{\pm}0.000008(2{\sigma}_m)$ and $0.512024{\pm}0.000012(2{\sigma}_m)$, respectively, and those from Vietnam are $0.717022{\pm}0.000008(2{\sigma}_m)$ and $0.511986{\pm}0.000013(2{\sigma}_m)$, respectively. The $^{87}Sr/^{86}Sr$ and $^{143}Nd/^{144}Nd$ ratios from Thailand tektite are slightly enriched than those of Vietnam tektite. $^{87}Sr/^{86}Sr$ ratios from the Vietnam and Thai tektites were plotted on the range of Australasian tektites reported previously. $^{143}Nd/^{144}Nd$ ratio of Vietnam tektite from this study was lower than the range of $^{143}Nd/^{144}Nd$ ratio from the Australasian tektite reported previously whereas that of Thai tektite was included in the range of $^{143}Nd/^{144}Nd$ ratio from the Australasian tektite. The geochemical characteristics from two tektites in this study indicate that they may be derived from the very similar source materials.

REE and Sr-Nd Isotopic Composition of the Shelf Sediments around Jeju Island, Korea (제주도 주변 대륙붕 퇴적물의 REE와 Sr-Nd 동위원소 조성)

  • Kim, Tae-Joung;Youn, Jeungsu
    • Journal of the Korean earth science society
    • /
    • v.33 no.6
    • /
    • pp.481-496
    • /
    • 2012
  • REE, major and trace elements, and Sr-Nd isotopic ratios of surface sediments around Jeju Island were analyzed for identifying the origin of the sediments. The Chemical Index of Alteration (CIA) between 44.2 to 68.9 (av. 59.4) shows a similarity with the Huanghe sediment. The most sediments found within the study areas show a very similar chondrite-normalized REE pattern that has enriched LREE ($La_{(N)}/Sm_{(N)}$ >3) and small negative Eu anomaly, typically of average shales. The UCC-nornalized REE patterns of the southwestern offshore sediment samples show a very similar pattem with the Changjiang sediment with enriched in most REE and more convex REE pattern than those of the Huanghe and Keum rivers sediments, which indicates that the Changjiang River's suspended sediments have been transported into the western part of Jeju Island. The $^{87}Sr/^{86}Sr$ isotopic ratios vs ${\varepsilon}_{Nd}(0)$ values were thus used as a tracer to discriminate the provenance of sediments in the study area. Based on the discriminated diagram, it clearly showed that most sediments in the western and northwestern part were closely plotted with sediments of the Huanghe River. However, the sediments in the southwestern part near the Changjianf estuary were closely plotted with submerged delta sediments of the Changjiang River. In contrast, the sediment samples of the northeastern part showed discriminative figures from those of the Chinese rivers. It suggests that sediments around Jeju Island must be originated from diverse sources.

Thermal Ion Mass Spectrometry with Isotope Dilution Method: An application to Rare Earth Element Geochemistry (동위원소희석법을 이용한 열이온 질량분석: 희토류원소 지구화학에의 응용)

  • ;;;增田彰正
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.190-201
    • /
    • 2001
  • Isotope Dilution Mass Spectrometry(IDMS) is one of the analytical method which uses enriched isotope spikes and analyzes the abundance of element by comparison of the spectrum between spiked mass and non-spike mass. Especially, the Thermal Ion Mass Spectrometry with isotope dilution technique (in general ID-TIMS) is the most accurate method of the chemical analysis, which enables us to obtain the data better than 1% in accuracy and precision. In IDMS, enriched isotope spike is one of the most important factor in order to obtain the best data. For rare earth elements, in general, a mixture of /sup 138/La, /sup 142/Ce, /sup 145/Nd, /sup 149/Sm, /sup 151/Sm, /sup 151/Eu, /sup 157/Gd, /sup 163/Dy, /sup 167/Er, /sup 171/Yb, and /sup 176/Lu is used as composite spike. IDMS is very useful in geochronology and REE geochemistry. Especially, it is very effective in studying the “tetrad effect” of rare earth elements in natural samples.

  • PDF

Precambrian Kyeonggin gneiss complex (선캠브리아 경기육괴 중 대리암의 연대측정에 대한 예비연구)

  • 박계헌;정창식
    • The Journal of the Petrological Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.130-138
    • /
    • 1993
  • Kyeonggi Gneiss complex forming Korean Precambrian basement is mainly composed of high-grade metasedimentary rocks, which are generally difficult to determine their absolute ages. We examined the feasibility of successive absolute age determination method for the marbles from this basement. We used hydrochloric acid for the selective dissolution of carbonate minerals from the marbles. Trace element analysis shows that most of Zr and Rb are concentrated in the residues. U in the residue is more abundant than that in HC1-dissolved parts. Pb, Sr, Sm, and Nd are somewhat evenly distributed between HC1-dissolved parts and the residues. }Th shows rather complex behavior. Sr isotopic compositions of the HC1-dissolved parts reveal mixing with Sr from non-carbonate minerals having much higher $^{87}Sr/^{86}Sr$ ratios. We suggest that the most reliable method in the age determination for the marbles of this area is measuring Pb isotopic ratios of the pieces of pure marbles.

  • PDF