• 제목/요약/키워드: NbCl5

검색결과 15건 처리시간 0.027초

염화반응법으로 제조된 TaCl5의 분리공정에 관한 비교 연구 (A Comparison Study on the Separation Process of TaCl5 from the Chlorinated Reaction Product)

  • 조정호;박소진;최영윤
    • Korean Chemical Engineering Research
    • /
    • 제44권3호
    • /
    • pp.259-264
    • /
    • 2006
  • 염화반응에 의한 $TaCl_5$의 제조에서 반응생성물 중 $NbCl_5$, $TiCl_4$, $FeCl_2$ 등이 주요 불순물로 존재하게 된다. $TaCl_5$$NbCl_5$는 증류나 수소 환원법에 의해 쉽게 분리가 되므로, 반응생성물에서 $TaCl_5/NbCl_5$ 혼합물을 99.9% 이상 순도로 분리하기 위해 2기의 연속식 증류공정을 사용하여 light한 성분과 heavy한 성분을 제거하는 공정을 구성하였다. 본고에서는 순차배열(direct sequence)과 비 순차배열(indirect sequence)으로서의 두 분리공정에 대한 비교연구를 상용성 화학공정모사기인 Aspen Plus 13.1을 이용해서 전산모사를 수행하였다. 비교결과 순차배열이 비 순차배열에 비하여 초기 장치투자비용이나 운전비용에서 좀 더 우수한 것으로 나타났다.

BCl3/Cl2/Ar 플라즈마에서의 Na0.5K0.5NbO3 박막의 표면반응 (Surface Reaction of Na0.5K0.5NbO3 Thin Films in Inductively Coupled BCl3/Cl2/Ar Plasma)

  • 김동표;엄두승;김관하;우종창;김창일
    • 한국표면공학회지
    • /
    • 제41권6호
    • /
    • pp.269-273
    • /
    • 2008
  • The etch of $(Na_{0.5}K_{0.5})NbO_3$ (NKN) thin film was performed in $BCl_3/Cl_2/Ar$ inductively coupled plasma. It was found that the 1sccm addition $BCl_3$ (5%) into $Cl_2/Ar$ plasma caused a non-monotonic behavior of the NKN etch rate. The maximum etch rate of NKN was 95.3 nm/min at $BCl_3$ (1 sccm)/$Cl_2$ (16 sccm)/Ar (4 sccm), 800 W ICP power, 1 Pa pressure and 400 W bias power. The NKN etch rate shows a monotonic behavior a s the bias power increases. The analysis of the narrow scan spectra of XPS for both a s-deposited and etched NKN films allowed one to assume ion assisted etch mechanism. The most probable reason for the maximum etch rate can be defined as a concurrence of chemical and physical etch pathways.

공침법에 의한 Pb(Mg1/3Nb2/3)O3 합성 (Synthesis of Pb(Mg1/3Nb2/3)O3 by Coprecipitation)

  • 황재석;이철태
    • 공업화학
    • /
    • 제5권5호
    • /
    • pp.862-870
    • /
    • 1994
  • 출발물질로 $Pb(NO_3)_2$, $Mg(NO_3)_2$, $NbCl_5$를 선정하여 이들을 수용액상으로 $Pb(Mg_{1/3}Nb_{2/3})O_3$조성에 맞도록 각 수용액을 정확히 취하여 $Pb(Mg_{1/3}Nb_{2/3})O_3$ 1M용액이 되도록 조제하였다. 이 혼합용액은 상온에서 $PbCl_2$를 형성하므로 $70^{\circ}C$로 가열하여 $PbCl_2$를 용해시킨 후, 침전제 oxine을 가하여 pH 8~10에서 공침물을 얻었다. 이 침전물을 여과, 건조의 공정을 거처 $700{\sim}1000^{\circ}C$로 5시간 하소하여 $Pb(Mg_{1/3}Nb_{2/3})O_3$을 합성하였으며 합성된 분말은 평균입경이 $0.3{{\mu}m}$ 정도이고 모양은 구형이었다. 그리고 합성된 분말을 $2000Kg/cm^2$의 압력으로 성형하고, $1100{\sim}1200^{\circ}C$로 소성하여 이론밀도의 97.4%인 소결체를 얻었고 이때의 유전율은 1kHz에서 17000이고 유전손실은 상온에서 0.02%이었다.

  • PDF

Solvent-free Cyanosilylation of Carbonyl Compounds Catalyzed by NbCl5

  • Georgea, Soney C.;Kim, Sung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권7호
    • /
    • pp.1167-1170
    • /
    • 2007
  • A simple and convenient method for the addition of TMSCN to carbonyl compounds is described. NbCl5 is found to possess a strong Lewis acid property to transform carbonyl compounds smoothly to the corresponding cyanosilylether in high yields (up to 99 %) in solvent- free conditions.

Structural Analysis of Species in NbCI5-EMIC Room-Temperature Molten Salt with Raman Spectroscopic Measurement and Ab Initio Molecular Orbital Calculation

  • Koura, Nobuyuki;Matsuzawa, Hidenori;Kato, Tomoki;Idemoto, Yasushi;Matsumoto, Futoshi
    • 전기화학회지
    • /
    • 제5권4호
    • /
    • pp.183-188
    • /
    • 2002
  • The structure of species formed in $NbCI_5-I-ethyl-3-methylimidazolium$ chloride (EMIC) room-temperature molten salt (RTMS) was examined with the Raman spectroscopic measurement and ab initio molecular orbital calculation. The equilibrium structures of $NbCl_5,\;NbCl_6^-,\;Nb_2CI_{10},\;Nb_2CI_{11}^-,\;Nb_3CI_6^-,\;NbCI_6^--EMI^+\;(in\;which\;NbCI_6^-$ anion approaches $EMI^+$ cation with strong interaction) and $Nb_2CI_{11}^--EMI^+$ were obtained with the HF/LANL2DZ level of calculation. The harmonic frequencies at each equilibrium structure were compared with Raman spectra. The harmonic frequencies of $NbCI_6^--EMI^+,\; Nb_2CI_{11}^--EMI^+,\;and\;Nb_2CI_{10}$ were in good agreement with the Raman spectra of RTMS melts. In the $NbCI_5-EMIC RTMS$, the main species were $NbCI_6^-\;and\;EMI^+$. In the $NbCl_5-EMIC$ RTMS added $NbCl_5\;over\;50mol\%$, small amount of $Nb_2CI_{11}^-\;and\; Nb_2CI_{10}$ were also formed. The structures of anions and cation in the RTMS distorted from free ions with Coulomb force.

Hydrogen Generation through the Reaction with Water of MgO, MgCl2 or Ni+Nb2O5 - Added Magnesium Hydrides

  • Hong, Seong-Hyeon;Kim, Hyun-Jin;Song, Myoung Youp
    • 대한금속재료학회지
    • /
    • 제50권2호
    • /
    • pp.183-190
    • /
    • 2012
  • Hydrogen was generated by the reaction of metal hydride with water. The variation of hydrogen generation with the kind of powders (milled $MgH_2$, and $MgH_2$ milled with various contents of MgO, $MgCl_2$ or $Ni+Nb_2O_5$) was investigated. $MgH_2$ powder with a hydrogen content of 6.05 wt% from Aldrich Company was used. Hydrogen is generated by the reaction of Mg as well as $MgH_2$ with water, resulting in the formation of byproduct $Mg(OH)_2$. For about 5 min of reaction time, milled $95%MgH_2+5%MgO$ has the highest hydrogen generation rate among milled $MgH_2+x%MgO$ (x=0, 5, 10, 15 and 20) samples. Milled $90%MgH_2+10%MgCl_2$ has the highest hydrogen generation rate among all the samples.

융제 및 Ta5+ 치환이 Lu(Nb,Ta)O4:Eu3+ 형광체의 발광 특성에 미치는 영향 (Effects of Flux and Ta5+ Substitution on the Photoluminescence of Lu(Nb,Ta)O4:Eu3+ Phosphors)

  • 김지원;김영진
    • 한국재료학회지
    • /
    • 제29권9호
    • /
    • pp.559-566
    • /
    • 2019
  • $Lu(Nb,Ta)O_4:Eu^{3+}$ powders are synthesized by a solid-state reaction process using LiCl and $Li_2SO_4$ fluxes. The photoluminescence (PL) excitation spectra of the synthesized powders consist of broad bands at approximately 270 nm and sharp peaks in the near ultraviolet region, which are assigned to the $Nb^{5+}-O^{2-}$ charge transfer of $[NbO_4]^{3-}$ niobates and the f-f transition of $Eu^{3+}$, respectively. The PL emission spectra exhibit red peaks assigned to the $^5D_0{\rightarrow}^7F_J$ transitions of $Eu^{3+}$. The strongest peak is obtained at 614 nm ($^5D_0{\rightarrow}^7F_2$), indicating that the $Eu^{3+}$ ions are incorporated into the $Lu^{3+}$ asymmetric sites. The addition of fluxes causes the increase in emission intensity, and $Li_2SO_4$ flux is more effective for enhancement in emission intensity than is LiCl flux. The substitution of $Ta^{5+}$ for $Nb^{5+}$ results in an increase or decrease in the emission intensity of $LuNb_{1-x}Ta_xO_4:Eu^{3+}$ powders, depending on amount and kind of flux. The findings are explained using particle morphology, modification of the $[NbO_4]^{3-}$ structure, formation of substructure of $LuTaO_4$, and change in the crystal field surrounding the $Eu^{3+}$ ions.