DOI QR코드

DOI QR Code

Hydrogen Generation through the Reaction with Water of MgO, MgCl2 or Ni+Nb2O5 - Added Magnesium Hydrides

  • Hong, Seong-Hyeon (Powder Materials Technology Group, KIMS, Korea Institute of Machinery and Materials) ;
  • Kim, Hyun-Jin (Powder Materials Technology Group, KIMS, Korea Institute of Machinery and Materials) ;
  • Song, Myoung Youp (Division of Advanced Materials Engineering, Department of Hydrogen and Fuel Cells, Hydrogen & Fuel Cell Research Center Engineering Research Institute, Chonbuk National University)
  • Received : 2011.09.22
  • Published : 2012.02.25

Abstract

Hydrogen was generated by the reaction of metal hydride with water. The variation of hydrogen generation with the kind of powders (milled $MgH_2$, and $MgH_2$ milled with various contents of MgO, $MgCl_2$ or $Ni+Nb_2O_5$) was investigated. $MgH_2$ powder with a hydrogen content of 6.05 wt% from Aldrich Company was used. Hydrogen is generated by the reaction of Mg as well as $MgH_2$ with water, resulting in the formation of byproduct $Mg(OH)_2$. For about 5 min of reaction time, milled $95%MgH_2+5%MgO$ has the highest hydrogen generation rate among milled $MgH_2+x%MgO$ (x=0, 5, 10, 15 and 20) samples. Milled $90%MgH_2+10%MgCl_2$ has the highest hydrogen generation rate among all the samples.

Keywords

Acknowledgement

Supported by : Ministry of Science and Technology

References

  1. J. S. Han and K. D. Park, Korean J. Met. Mater. 48, 1123 (2010).
  2. K. D. Park and J. S. Han, Korean J. Met. Mater. 49, 945 (2011).
  3. K. I. Kim and T. W. Hong, Korean J. Met. Mater. 49, 264 (2011). https://doi.org/10.3365/KJMM.2011.49.3.264
  4. S. H. Hong, S. N. Kwon, and M. Y. Song, Korean J. Met. Mater. 49, 298 (2011). https://doi.org/10.3365/KJMM.2011.49.4.298
  5. H. Z. Wang, D. Y. C. Leung, M. K. H. Leung, and M. Ni, Renewable and Sustainable Energy Reviews 13, 845 (2009). https://doi.org/10.1016/j.rser.2008.02.009
  6. D. Belitskus, J. Electrochem. Soc. 117, 1097 (1970). https://doi.org/10.1149/1.2407730
  7. L. Soler, J. Macanas, M. Munoz, J. Casado, J. Power Sources 169, 144 (2007). https://doi.org/10.1016/j.jpowsour.2007.01.080
  8. J. Y. Uan, C. Y. Cho, and K. T. Liu, Int. J. Hydrogen Energy 32, 2337 (2007). https://doi.org/10.1016/j.ijhydene.2007.03.014
  9. J. Y. Uan, S. H. Yu, M. C. Lin, L. F. Chen, and H. I. Lin, Int. J. Hydrogen Energy 34, 137 (2009).
  10. J. Y. Uan, M. C. Lin, C. Y. Cho, K. T. Liu, and H. I. Lin, Int. J. Hydrogen Energy 34, 1677 (2009). https://doi.org/10.1016/j.ijhydene.2008.11.097
  11. M. H. Grosjean, M. Zidoune, J. Y. Huot, and L. Roue, Int. J. Hydrogen Energy 31, 1159 (2006). https://doi.org/10.1016/j.ijhydene.2005.10.001
  12. M. H. Grosjean, M. Zidoune, L. Roue, and J. Y. Huot, Int. J. Hydrogen Energy 31, 109 (2006). https://doi.org/10.1016/j.ijhydene.2005.01.001
  13. H. Wang, L. Han, H. Hu, and D. O. Northwood, J. Alloys Compd. 470, 539 (2009). https://doi.org/10.1016/j.jallcom.2008.03.016