• Title/Summary/Keyword: Nb2O3

Search Result 1,400, Processing Time 0.032 seconds

Study on the Charge-Transfer Complexes Formed between the Derivatives of Nitrobenzene and Some Organic Solvent Molecules (용매성 유기분자와 니트로벤젠 및 그의 유도체와의 전하전이 착물에 관한 연구)

  • Doo-Soon Shin;Si-Joong Kim
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.85-94
    • /
    • 1973
  • The stability constants of the charge-transfer complexes formed between three derivatives of nitrobenzene, i.e., 1,3,5-trinitrobenzene, m-dinitrobenzene, nitrobenzene and eleven organic molecules such as $\alpha-picoline$, pyridine, dimethylsulfoxide, N, N'-dimethylacetamide, tetrahydrofurane, 1, 4-dioxane, diethyl ether, acetonitrile, propylene oxide, epichlorohydrine, and methyl acetate, have been determined by ultraviolet absorption spectroscopy in carbon tetrachloride solution at 25.0$^{\circ}C$. The parameters of the electrostatic effect ($E_D$) and covalent effect ($C_D$) for the eleven organic compounds have been calculated from the modified equation of the double-scale enthalpy,$logK = E_AC_A+E_DC_D$ and also the shift of C=O vibrational frequency in infrared spectra for N,N'-dimethylacetamide have been measured from the solutions of above organic compounds. The empirical equation, ${\Delta}{\nu}_{C=O} = 37.4-5.47E_D+12.1C_D$, related to the parameters and the frequency shift has been derived. It seems that the stabilities of the complexes principally depend on the covalent effect. Especially it is found that $\pi$ orbitals in molecules, in addition to the parameters, play the important role in forming the charge-transfer complexes.

  • PDF

Dielectric and Piezoelectric Properties of Alkaline Lead-free Piezoceramic-epoxy Composites (알칼리계 무연 압전 세라믹과 에폭시 복합소재의 유전 및 압전 특성)

  • Yoon, Chang-Ho;Le, Duc Thang;Heo, Dae-Jun;Ahn, Kyoung-Kwan;Lee, Jae-Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.6
    • /
    • pp.420-425
    • /
    • 2012
  • Lead-free piezoelectric ceramic/epoxy composites with '0-3' connectivity were prepared by cold-pressing with a temperature controlled curing method. A ceramic powder with a composition of $(Na_{0.51}K_{0.47}Li_{0.02})(Nb_{0.8}Ta_{0.2})O_3$ was synthesized by a conventional solid state reaction route. The dielectric and piezoelectric properties of ceramic/epoxy composites were characterized as a function of the volume fraction (${\phi}$) of piezoelectric ceramics, which was varied from 70 to 95 vol%. The results indicated that the piezoelectric properties of composites were significantly affected by the volume fraction of ceramics. In terms of the piezoelectric properties, specimens showed the best performance at ${\phi}$= 85 vol%, resulting in the piezoelectric constant $d_{33}$ of 39 pC/N and the figure of merit as a piezoelectric energy harvester ($d_{33}{\cdot}g_{33}$) of 1.24 $pm^2/N$.

Sensitivity Measurement of the Piezoelectric Paint Sensor according to the Poling Electric Field (분극 전계에 따른 압전 페인트 센서 감도 측정)

  • Han, Dae-Hyun;Park, Seung-Bok;Kang, Lae-Hyong
    • Composites Research
    • /
    • v.27 no.4
    • /
    • pp.146-151
    • /
    • 2014
  • In this study, the experimental study has been performed by varying the polarization of the electric field and impact force to check the piezoelectric characteristics of piezoelectric paint sensor. Piezoelectric paint sensor used in this study is composed of epoxy resin with a hardener and PNN-PZT powder in 1:1 weight ratio. The dimensions of the paint sensor specimen are $40{\times}40{\times}1mm^3$ and regular specimens were made using a mold. The voids are removed from the specimen in the vacuum desiccator. Both upper side and bottom side of the paint sensor were coated with silver paste for making an electrode and then dried at room temperature for a day. The poling treatment has been carried out under controlled conditions of the electric field in order to check the effect of piezoelectric sensitivities, while the poling temperature was fixed at room temperature and the poling time was set to 30 min. The piezoelectric sensitivities have been measured by comparing output voltage from paint sensor with output force from impact hammer when the impact hammer hits the paint sensor. In result, the effect of the electric field has been evaluated for the sensitivity and describe the result.

The Trapped Field Decay of YBCO Superconductor Composite with Times (시간 경과에 따른 YBCO 초전도 복합체의 포획 자기장 감쇄)

  • Lee, M.S.;Jang, G.E.;Jun, B.H.;Ha, D.W.;Son, M.H.;Han, Y.H.;Park, B.J.
    • Progress in Superconductivity
    • /
    • v.12 no.2
    • /
    • pp.82-87
    • /
    • 2011
  • We studied the trapped field properties of bulk Y-Ba-Cu-O superconductors by applying 3 T of the permanent or $Nb_3Ti$ superconducting magnet. The 28 mm circular type of YBCO bulk superconductor was prepared and then hole at the center of bulk, parallel to the c-axis, was mechanically drilled. Typical size of hole in YBCO bulk was 10 mm in diameter. In order to examine the trapped field variation in terms of different impregnated materials, a hole in YBCO bulk was filled with resin and indium respectively. The trapped field decay due to flux flow was determined in terms of time. Our preliminary result indicates the trapped field value measured on the YBCO without hole after 30 minute by applying 3 T, was 6,500 G, which is much higher than that, 4,500 G, measured on YBCO with hole. Also, we confirmed that the tendency of a trapped field decrement with time was almost the same regardless of the impregnated materials in YBCO.

Method for the Assembly of a High-density Multi-channel Deformable Mirror for High Energy Lasers (고에너지 레이저용 고밀집 다채널 실리콘-카바이드 변형거울의 정밀 조립 방법)

  • Hyug-Gyo Rhee;Sunho Cho;Sihyun Kim;Jaehyun Lee;Pilseong Kang
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.4
    • /
    • pp.170-174
    • /
    • 2024
  • A laser beam propagating in free space can be negatively affected by atmospheric turbulence. To overcome this and correct the wavefront error of the laser beam itself, a deformable mirror (DM), which is a key component of adaptive optics, is widely used. In this paper, a novel precision assembling method is suggested for a multi-channel high-density DM. The material of the mirror sheet of the DM is silicon carbide (SiC), and the actuator is a stacked-type lead-magnesium-niobate (Pb(Mg1/3Nb2/3)O3; PMN). To connect the mirror sheet and each actuator, a flexure is inserted. The flexure can make the DM operate with full strokes without the failure of adhesive. A series of jigs were designed and applied in order to assemble these three parts (the mirror sheet, actuators, and flexures) precisely. After assembly, the performance of the DM was also checked.

다층 PNN-PZT/Ag 복합체의 동시 소성을 위한 압전세라믹스의 저온소결 및 압전특성 평가

  • Lee, Myeong-U;Son, Yong-Ho;Kim, Seong-Jin;Yun, Man-Sun;Ryu, Seong-Rim;Gwon, Sun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.295-295
    • /
    • 2007
  • 기계적 에너지를 전기적 에너지로 변화하는 에너지 변환소자인 압전 세라믹스는 액츄에이터, 변압기, 초음파모터, 초음파 소자 및 각종 센서로 응용되고 있으며, 그 응용분야는 크게 증가하고 있다. 최근 이러한 에너지 변화 소자는 앞으로 도래하는 ubiquitous, 무선 모바일 시대의 휴대용 전자제품, robotics, 항공우주, 자동차, 의료, 건축, MEMS 분야 등의 대체 에너지원으로 응용하기 위한 연구가 진행되고 있다. 특히 인간의 동작 등과 같은 일상적인 동작으로 필요한 전력을 얻을 수 있고, 세라믹 소자를 이용하기 때문에 전자노이즈가 발생되지 않을 뿐 아니라 반영구적으로 사용할 수가 있어서, 기존 이차전지, 연료전지를 대체 또는 보완 할 수 있는 방안도 검토되고 있다. PZT계 세라믹스는 높은 유전상수와 압전특성으로 전자세라믹스분야에서 가장 널리 사용되어지고 있지만 $1200^{\circ}C$이상의 높은 소결온도 때문에 $1000^{\circ}C$ 부근에서 급격히 휘발되는 PbO로 인한 환경오염과 기본조성의 변화로 인한 압전 특성의 저하가 문제시되고 있다. 또한, 적층 세라믹스의 제작 시 구조적 특성상 내부 전극이 도포된 상태에서 동시 소결이 필요한데, 융점이 낮은 Ag전극 대신 값비싼 Pd나 Pt가 다량 함유된 Ag/Pd, Ag/Pt 전극이 사용되고 있어 경제적인 문제가 발생하게 된다. 따라서 순수 Ag 전극을 사용하거나, Ag의 비율이 높은 내부 전극을 사용하기 위해서는 $950^{\circ}C$ 이하에서 소결되는 압전 세라믹스를 개발 하는 것이 필요하다. 따라서 본 연구에서는 압전특성이 우수한 $(Pb_{1-x}Cd_x)\;[(Ni_{1/3}/Nb_{2/3})_{0.25}Zr_{0.35}Ti_{0.4}]O_3$계의 조성을 설계하여, 소결온도를 낮추기 위해서 2단계 하소법을 이용하였다. 분말을 ball milling을 통해 24시간 동안 혼합하였다. 혼합된 분말은 $800^{\circ}C$에서 2시간 동안 하소하였다. 하소한 분말을 72시간 동안 ball milling 하여 최종 분말을 얻었다. 최종 분말에 PVB를 첨가하여 ${\Phi}21$ disk 형태로 성형한 후, $800{\sim}950^{\circ}C$ 소결을 하였다. 최종 분말 및 소결된 시편을 XRD분석을 통하여 상을 확인하였고, SEM을 이용하여 미세조직을 관찰하였다. 전기적 특성을 확인하기 위하여 두께 1mm로 연마한 시편에 Ag 전극을 도포하여 열처리한 후, 분극 처리하였다. 압전특성은 $d_{33}$ 미터로 측정하였고, impedance analyzer를 이용하여 주파수 및 impedance 특성을 측정하였다. 그 결과 $900^{\circ}C$에서 우수한 압전 특성 및 전기적 특성을 확보 할 수 있었다.

  • PDF

The Effect of Deposition Parameters on the Morphology of KLN Thin Films (증착 조건이 KLN 박막의 형상에 미치는 영향)

  • Park, Seong-Geun;Jeon, Byeong-Eok;Kim, Jin-Su;Kim, Ji-Hyeon;Choe, Byeong-Jin;Nam, Gi-Hong;Ryu, Gi-Hong;Kim, Gi-Wan
    • Korean Journal of Materials Research
    • /
    • v.11 no.1
    • /
    • pp.27-33
    • /
    • 2001
  • The growth characteristics of 4-fold grain which was appeared in KLN deposition on $Pt/Ti/SiO_2/Si(100)$ substrate was studied by varying process variables. Substrate temperature, sputtering pressure, rf power were selected as process variables, and experiment was carried out near optimum fabrication condition. When using K and Li enriched target, the optimum fabrication conditions were substrate temperature of $600^{\circ}C$, sputtering pressure of 150mTorr, rf power of 100 W and its surface morphology is sensitively varied by small deposition condition changes. KLN is composed of elements which have large difference of boiling point. And it is difficult to fabricate thin film at high temperature and high vacuum deposition condition. Furthermore the phenomenon during deposition process can not be explained by using Thorton's model which explains the relation between thin film structure and melting point of thin film materials. These phenomenon can be explained using boiling point of elements which consist of thin film material.

  • PDF

Highly Doped Nano-crystal Embedded Polymorphous Silicon Thin Film Deposited by Using Neutral Beam Assisted CVD at Room Temperature

  • Jang, Jin-Nyeong;Lee, Dong-Hyeok;So, Hyeon-Uk;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.154-155
    • /
    • 2012
  • The promise of nano-crystalites (nc) as a technological material, for applications including display backplane, and solar cells, may ultimately depend on tailoring their behavior through doping and crystallinity. Impurities can strongly modify electronic and optical properties of bulk and nc semiconductors. Highly doped dopant also effect structural properties (both grain size, crystal fraction) of nc-Si thin film. As discussed in several literatures, P atoms or radicals have the tendency to reside on the surface of nc. The P-radical segregation on the nano-grain surfaces that called self-purification may reduce the possibility of new nucleation because of the five-coordination of P. In addition, the P doping levels of ${\sim}2{\times}10^{21}\;at/cm^3$ is the solubility limitation of P in Si; the solubility of nc thin film should be smaller. Therefore, the non-activated P tends to segregate on the grain boundaries and the surface of nc. These mechanisms could prevent new nucleation on the existing grain surface. Therefore, most researches shown that highly doped nc-thin film by using conventional PECVD deposition system tended to have low crystallinity, where the formation energy of nucleation should be higher than the nc surface in the intrinsic materials. If the deposition technology that can make highly doped and simultaneously highly crystallized nc at low temperature, it can lead processes of next generation flexible devices. Recently, we are developing a novel CVD technology with a neutral particle beam (NPB) source, named as neutral beam assisted CVD (NBaCVD), which controls the energy of incident neutral particles in the range of 1~300eV in order to enhance the atomic activation and crystalline of thin films at low temperatures. During the formation of the nc-/pm-Si thin films by the NBaCVD with various process conditions, NPB energy directly controlled by the reflector bias and effectively increased crystal fraction (~80%) by uniformly distributed nc grains with 3~10 nm size. In the case of phosphorous doped Si thin films, the doping efficiency also increased as increasing the reflector bias (i.e. increasing NPB energy). At 330V of reflector bias, activation energy of the doped nc-Si thin film reduced as low as 0.001 eV. This means dopants are fully occupied as substitutional site, even though the Si thin film has nano-sized grain structure. And activated dopant concentration is recorded as high as up to 1020 #/$cm^3$ at very low process temperature (< $80^{\circ}C$) process without any post annealing. Theoretical solubility for the higher dopant concentration in Si thin film for order of 1020 #/$cm^3$ can be done only high temperature process or post annealing over $650^{\circ}C$. In general, as decreasing the grain size, the dopant binding energy increases as ratio of 1 of diameter of grain and the dopant hardly be activated. The highly doped nc-Si thin film by low-temperature NBaCVD process had smaller average grain size under 10 nm (measured by GIWAXS, GISAXS and TEM analysis), but achieved very higher activation of phosphorous dopant; NB energy sufficiently transports its energy to doping and crystallization even though without supplying additional thermal energy. TEM image shows that incubation layer does not formed between nc-Si film and SiO2 under later and highly crystallized nc-Si film is constructed with uniformly distributed nano-grains in polymorphous tissues. The nucleation should be start at the first layer on the SiO2 later, but it hardly growth to be cone-shaped micro-size grains. The nc-grain evenly embedded pm-Si thin film can be formatted by competition of the nucleation and the crystal growing, which depend on the NPB energies. In the evaluation of the light soaking degradation of photoconductivity, while conventional intrinsic and n-type doped a-Si thin films appeared typical degradation of photoconductivity, all of the nc-Si thin films processed by the NBaCVD show only a few % of degradation of it. From FTIR and RAMAN spectra, the energetic hydrogen NB atoms passivate nano-grain boundaries during the NBaCVD process because of the high diffusivity and chemical potential of hydrogen atoms.

  • PDF

Improving Sensitivity of SAW-based Pressure Sensor with Metal Ground Shielding over Cavity

  • Lee, Kee-Keun;Hwang, Jeang-Su;Wang, Wen;Kim, Geun-Young;Yang, Sang-Sik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.3 s.36
    • /
    • pp.267-274
    • /
    • 2005
  • This paper presents the fabrication of surface acoustic wave (SAW)-based pressure sensor for long-term stable mechanical compression force measurement. SAW pressure sensor has many attractive features for practical pressure measurement: no battery requirement, wireless pressure detection especially at hazardous environments, and easy other functionality integrations such as temperature, humidity, and RFID. A $41^{\circ}$ YX $LiNbO_3$ piezoelectric substrate was used because of its high SAW propagation velocity and large values of electromechanical coupling factors $K^2$. A silicon substrate with $\~200{\mu}m$ deep cavity was bonded to the diaphragm with epoxy, in which gold was covered all over the inner cavity in order to confine electromagnetic energy inside the sensor, and provide good isolation of the device from its environment. The reflection coefficient $S_{11}$ was measured using network analyzer. High S/N ratio, sharp reflected peaks, and clear separation between the peaks were observed. As a mechanical compression force was applied to the diaphragm from top with extremely sharp object, the diaphragm was bended, resulting in the phase shifts of the reflected peaks. The phase shifts were modulated depending on the amount of applied mechanical compression force. The measured $S_{11}$ results showed a good agreement with simulated results obtained from equivalent admittance circuit modeling.

  • PDF

Sum-frequency Generation Using a Mode-locked Pulsed Laser and a Continuous-wave Diode Laser (모드 잠금된 펄스 레이저와 연속 발진하는 반도체 레이저를 이용한 합주파수 생성)

  • Kim, Hyunhak;Park, Nam Hun;Yeom, Dong-Il;Cha, Myoungsik;Moon, Han Seb
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.2
    • /
    • pp.62-67
    • /
    • 2021
  • We have experimentally demonstrated sum-frequency generation (SFG) in a periodically poled lithium niobate (PPLN) crystal, using a mode-locked picosecond-pulsed fiber laser and a continuous-wave (CW) diode laser with a narrow linewidth. The mode-locked fiber laser had a center wavelength of 1560.7 nm and a spectral width of 1.1 nm, and the CW diode laser had a center wavelength of 1551.0 nm and a spectral width of 6 MHz. To effectively realize SFG, both of the spatial modes of the two lasers were made to overlap in the PPLN crystal by using a single-mode optical fiber. The pulse-mode SFG with pulsed- and CW-mode lasers was successfully observed in the spectral and time domains. These results are expected to be applicable in various ways, such as optical frequency measurement and high-resolution laser spectroscopy studies using optical frequency combs.