• 제목/요약/키워드: Navior-Stokes equation

검색결과 3건 처리시간 0.015초

난류모형을 적용한 장애물이 있는 파이프내의 유동장 수치시뮬레이션 (Numerical Simulation of Pipe Flow with an Obstacle by applying Turbulent Models)

  • 곽승현
    • 한국항해항만학회지
    • /
    • 제29권6호
    • /
    • pp.523-528
    • /
    • 2005
  • 장애물이 있는 배관속의 점성유동을 다양한 난류모형을 적용하여 해석하였다. 적용한 난류모형은 k-$\epsilon$, k-$\omega$, Spalart-Allmaras, Reynolds stress 이고, 배관내의 격자는 구조격자(structured grid) 이다. 속도벡터, 압력분포 반복계산(iteration)에 의한 잔류치(residual), 양정(dynamic head) 등을 모사하였다. 4개의 난류모형을 배관유동에 적용하였고 상용 프로그램을 사용하여 해석을 수행하였다.

Simulation of Turbulent Flow and Surface Wave Fields around Series 60 $C_B$=0.6 Ship Model

  • Kim, Hyoung-Tae;Kim, Jung-Joong
    • Journal of Ship and Ocean Technology
    • /
    • 제5권1호
    • /
    • pp.38-54
    • /
    • 2001
  • A finite difference method for calculating turbulent flow and surface wave fields around a ship model is evaluated through the comparison with the experimental data of a Series 60 $C_B$=0.6 ship model. The method solves the Reynolds-averaged Navior-Stokes Equations using the non-staggered grid system, the four-stage Runge-Kutta scheme for the temporal integration of governing equations and the Bladwin-Lomax model for the turbulence closure. The free surface waves are captured by solving the equation of the kinematic free-surface condition using the Lax-Wendroff scheme and free-surface conforming grids are generated at each time step so that one of the grid surfaces coincides always with the free surface. The computational results show an overall close agreement with the experimental data and verify that the present method can simulate well the turbulent boundary layers and wakes as well as the free-surface waves.

  • PDF

고속탄자 유동의 가시화 실험 및 비정렬격자 계산 (Flow Visualization and Unstructured Grid Computation of Flow over a High-Speed Projectile)

  • 이상길;최서원;강준구;임홍규;백영호;김두연;강호철
    • 한국자동차공학회논문집
    • /
    • 제6권2호
    • /
    • pp.12-20
    • /
    • 1998
  • Exter ballistics of a typical high-speed projectile is studied through a flow-visualization experiment and an unstructured grid Navier-Srokes computation. Experiment produced a schlieren photograph that adequately shows the characteristic features of this complex flow, namely two kinds of oblique cone shocks and turbulent wake developing into the downstream. A hybrid scheme of finite volume-element method is used to simulate the compressible Reynolds-Averaged Navier-Stok- es solution on unstructured grids. Osher's approximate Riemann solver is used to discretize the cinvection term. Higher-order spatial accuracy is obtained by MUSCL extension and van Albada ty- pe flux limiter is used to stabilize the numerical oscillation near the solution discontinuity. Accurate Gakerkin method is used to discretize the viscous term. Explict fourth-order Runge-Kutta method is used for the time-stepping, which simplifies the application of MUSCL extension. A two-layer k-$\varepsilon$ turbulence model is used to simulate the turbulent wakes accurately. Axisymmetric folw and two-dimensional flow with an angle of attack have been computed. Grid-dependency is also checked by carrying out the computation with doubled meshes. 2-D calculation shows that effect of angle of attack on the flow field is negligible. Axi-symmetric results of the computation agrees well with the flow visualization. Primary oblique shock is represented within 2-3 meshes in numerical results, and the varicose mode of the vortex shedding is clearly captured in the turbulent wake region.

  • PDF