• 제목/요약/키워드: Navigation-Position

검색결과 1,399건 처리시간 0.031초

Performance Analysis of Wide-Area Differential Positioning Based on Regional Navigation Satellite System

  • Kim, Donguk;So, Hyoungmin;Park, Junpyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권1호
    • /
    • pp.35-42
    • /
    • 2021
  • The position accuracy of the stand-alone Regional Navigation Satellite System (RNSS) users is more than tens of meters because of various error sources in satellite navigation signals. This paper focuses on wide-area differential (WAD) positioning technique, which is already applied in Global Navigation Satellite System (GNSS), in order to improve the position accuracy of RNSS users. According to the simulation results in the very narrow ground network in regional area, the horizontal position error of stand-alone RNSS is about RMS 11.6 m, and that of RNSS with WAD technique, named the WAD-RNSS, is about RMS 2.5 m. The accuracy performance has improved by about 78%.

퍼지추론을 이용한 무인잠수정의 하이브리드 항법 시스템 (A hybrid navigation system of underwater vehicles using fuzzy inferrence algorithm)

  • 이판묵;이종무;정성욱
    • 한국해양공학회지
    • /
    • 제11권3호
    • /
    • pp.170-179
    • /
    • 1997
  • This paper presents a hybrid navigation system for AUV to locate its position precisely in rough sea. The tracking system is composed of various sensors such as an inclinometer, a tri-axis magnetometer, a flow meter, and a super short baseline(SSBL) acoustic position tracking system. Due to the inaccuracy of the attitude sensors, the heading sensor and the flowmeter, the predicted position slowly drifts and the estimation error of position becomes larger. On the other hand, the measured position is liable to change abruptly due to the corrupted data of the SSBL system in the case of low signal to noise ratio or large ship motions. By introducing a sensor fusion technique with the position data of the SSBL system and those of the attitude heading flowmeter reference system (AHFRS), the hybrid navigation system updates the three-dimensional position robustly. A Kalman filter algorithm is derived on the basis of the error models for the flowmeter dynamics with the use of the external measurement from the SSBL. A failure detection algorithm decides the confidence degree of external measurement signals by using a fuzzy inference. Simulation is included to demonstrate the validity of the hybrid navigation system.

  • PDF

A Study on Errors in the Free-Gyro Positioning & Directional System(II)

  • 정태권
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2012년도 춘계학술대회
    • /
    • pp.160-161
    • /
    • 2012
  • This paper is to develop & analyze the position & direction error equations in the free-gyro positioning & directional system by using two free gyros and is to find out the amount of the errors. First, the position & direction error equations are introduced and developed, based on the position & direction equations. Second, the value of errors is discussed based on sensors errors.

  • PDF

개인휴대 추측항법 시스템을 위한 신경망을 이용한 보폭 결정 방법 (Step size determination method using neural network for personal navigation system)

  • 윤선일;홍진석;지규인
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.80-80
    • /
    • 2000
  • The GPS can provide accurate position information on the earth. But GPS receiver can't give position information inside buildings. DR(Dead-Reckoning) or INS(Inertial Navigation System) gives position information continuously indoors as well as outdoors, because they do not depend on the external navigation information. But in general, the inertial sensors severely suffer from their drift errors, the error of these navigation system increases with time. GPS and DR sensors can be integrated together with Kalman filter to overcome these problems. In this paper, we developed a personal navigation system which can be carried by person, using GPS and electronic pedometer. The person's footstep is detected by an accelerometer installed in vertical direction and the direction of movement is sensed by gyroscope and magnetic compass. In this case the step size is varying with person and changing with circumstance, so determining step size is the problem. In order to calculate the step size of detected footstep, the neural network method is used. The teaming pattern of the neural network is determined by human walking pattern data provided by 3-axis accelerometer and gyroscope. We can calculate person's location with displacement and heading from this information. And this neural network method that calculates step size gives more improved position information better than fixed step size.

  • PDF

GPS Simulation System 개발에 관한 연구 (A Study on Development of GPS Simulation Tool Kit)

  • 양원재;전승환
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 1998년도 제 23회 정기총회 및 추계학술발표회
    • /
    • pp.65-73
    • /
    • 1998
  • Ship's positino data obtaining method is ine of the very important factor innavigation . Nowadays, GPS(Global Positioning System) using the earth orbiting satellites are equipped and operated for the position finding. Because it provides more precise position information than other equipments and is very convenient for navigator. In this study, it is designed to develop the GPS simulator for everybody being able to proactise the GPS operating skill like as navigation planning, navigation calculating etc. And also, it can be operated with personal computer without real GPS receiver. This simulation system is based on the real GPS receiver system and built by the visual basic 5.0 program. And it displays the ship's position and navigating information and plots the ship's moving track on the screen in real time according as initial setup data-main engine's rpm, rudder angle, depature position and waypoint.

  • PDF

이동하는 물체의 자세와 위치를 추정하기 위한 다중 필터 관성 항법 시스템 (Estimation of Attitude and Position of Moving Objects Using Multi-filtered Inertial Navigation System)

  • 황서영;이장명
    • 전기학회논문지
    • /
    • 제60권12호
    • /
    • pp.2339-2345
    • /
    • 2011
  • This paper proposes a new multi-filtered inertial navigation system to estimate the attitude and position of moving objects. This system has two states, the one is attitude state and the other is position/velocity state. For compensating IMU sensor errors, each of the two states uses a different filter: the attitude state uses the EKF and the position state uses the UPF. The fast and precise characteristics of the EKF have been properly utilized for the attitude estimation, while superior dynamic characteristics of the UPF have been fully adopted for the position estimation. The combination of these two filters in an inertial navigation system improves the system performance to be faster and more accurate. Experimental results demonstrate the superiority of this approach comparing to the conventional ones.

자유자이로 위치 및 방위시스템의 오차에 관한 연구 (A Study on the Errors in the Free-Gyro Positioning and Directional System)

  • 정태권
    • 한국항해항만학회지
    • /
    • 제37권4호
    • /
    • pp.329-335
    • /
    • 2013
  • This paper is to develop the position error equations including the attitude errors, the errors of nadir and ship's heading, and the errors of ship's position in the free-gyro positioning and directional system. In doing so, the determination of ship's position by two free gyro vectors was discussed and the algorithmic design of the free-gyro positioning and directional system was introduced briefly. Next, the errors of transformation matrices of the gyro and body frames, i.e. attitude errors, were examined and the attitude equations were also derived. The perturbations of the errors of the nadir angle including ship's heading were investigated in each stage from the sensor of rate of motion of the spin axis to the nadir angle obtained. Finally, the perturbation error equations of ship's position used the nadir angles were derived in the form of a linear error model and the concept of FDOP was also suggested by using covariance of position error.

구면항법과 쌍곡면항법의 알고리즘을 조합한 고정도 위치결정법에 관한 연구 (A Study on High Accuracy Position Fixing Method by Combining the Algorithm of Hyperbolic and Spherical Navigation System)

  • 김우숙;김동일;정세모
    • 한국항해학회지
    • /
    • 제12권1호
    • /
    • pp.45-53
    • /
    • 1988
  • In this paper, the equations calculating GDOP are induced in Hyperboic, and Spherical Navigation System, respectively, The GDOP diagram shows that the DGOP in the inner region of Beacons is similar each other, but the GDOP of Hyperboic Navigation System is much larger than that of Spherical Navigation System due to GDOP in the outer region of Beacons. The authors propose the algorithm estimating the pulse starting time using the Hyperboic Navigation System, and prove that if Navigation use the Spherical Navigation System by adopting the proposed Algorithm -in this case, "Pseudo Sperical Navigation System" - in the outer region where GDOP is becoming large, the position errors can be reduced.e reduced.

  • PDF

GPS/INS Integration using Vector Delay Lock Loop Processing Technique

  • Kim, Hyun-Soo;Bu, Sung-Chun;Jee, Gyu-In
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2641-2647
    • /
    • 2003
  • Conventional DLLs estimate the delay times of satellite signals individually and feed back these measurements to the VCO independently. But VDLL estimates delay times and user position directly and then estimate the feedback term for VCO using the estimated position changes. In this process, input measurements are treated as vectors and these vectors are used for navigation. First advantage of VDLL is that noise is reduced in all of the tracking channels making them less likely to enter the nonlinear region and fall below threshold. Second is that VDLL can operate successfully when the conventional independent parallel DLL approach fails completely. It means that VDLL receiver can get enough total signal power to track successfully to obtain accurate position estimates under the same conditions where the signal strength from each individual satellite is so low or week that none of the individual scalar DLL can remain in lock when operating independently. To operate VDLL successfully, it needs to know the initial user dynamics and position and prevents total system from the divergence. The suggested integration method is to use the inertial navigation system to provide initial dynamics for VDLL and to maintain total system stable. We designed the GPS/INS integrated navigation system. This new type of integrated system contained the vector pseudorange format generation block, VDLL signal processing block, position estimation block and the conversion block from position change to delay time feedback term aided by INS.

  • PDF

수정된 비용함수를 이용한 비선형 최적화 방법 기반의 이동로봇의 장애물 회피 비주얼 서보잉 (Visual Servoing of a Wheeled Mobile Robot with the Obstacle Avoidance based on the Nonlinear Optimization using the Modified Cost Function)

  • 김곤우
    • 전기학회논문지
    • /
    • 제58권12호
    • /
    • pp.2498-2504
    • /
    • 2009
  • The fundamental research for the mobile robot navigation using the numerical optimization method is presented. We propose an image-based visual servo navigation algorithm for a wheeled mobile robot utilizing a ceiling mounted camera. For the image-based visual servoing, we define the composite image Jacobian which represents the relationship between the speed of wheels of a mobile robot and the robot's overall speed in the image plane. The rotational speed of wheels of a mobile robot can be directly related to the overall speed of a mobile robot in the image plane using the composite image Jacobian. We define the mobile robot navigation problem as an unconstrained optimization problem to minimize the cost function with the image error between the goal position and the position of a mobile robot. In order to avoid the obstacle, the modified cost function is proposed which is composed of the image error between the position of a mobile robot and the goal position and the distance between the position of a mobile robot and the position of the obstacle. The performance was evaluated using the simulation.