• Title/Summary/Keyword: Navigation Processing

Search Result 898, Processing Time 0.033 seconds

Software-based Real-time GNSS Signal Generation and Processing Using a Graphic Processing Unit (GPU)

  • Im, Sung-Hyuck;Jee, Gyu-In
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.3
    • /
    • pp.99-105
    • /
    • 2014
  • A graphic processing unit (GPU) can perform the same calculation on multiple data (SIMD: single instruction multiple data) using hundreds of to thousands of special purpose processors for graphic processing. Thus, high efficiency is expected when GPU is used for the generation and correlation of satellite navigation signals, which perform generation and processing by applying the same calculation procedure to tens of millions of discrete signal samples per second. In this study, the structure of a GPU-based GNSS simulator for the generation and processing of satellite navigation signals was designed, developed, and verified. To verify the developed satellite navigation signal generator, generated signals were applied to the OEM-V3 receiver of Novatel Inc., and the measured values were examined. To verify the satellite navigation signal processor, the performance was examined by collecting and processing actual GNSS intermediate frequency signals. The results of the verification indicated that satellite navigation signals could be generated and processed in real time using two GPUs.

LabVIEW-based User Interface Design for Multi-Integrated Navigation Systems (다중 통합항법 시스템을 위한 랩뷰 기반의 사용자 인터페이스 설계)

  • Jae Hoon Son;Junwoo Jung;Sang Heon Oh;JunMin Park;Dong-Hwan Hwang
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.75-83
    • /
    • 2024
  • In order to reduce the time and cost of developing a navigation system, a performance evaluation platform can be used. A User Interface (UI) is required to effectively evaluate the performance, which sets parameters and gives navigation sensor signals and data display, and also displays navigation results. In this paper, a LabVIEW-based UI design method for multi-integrated navigation systems is proposed and implementation results are presented. The UI consists of a signal and data generation part and a signal and data processing part. The signal and data generation part sets parameters for the signal and data generation and displays the navigation sensor signal and data generation results. The signal and data processing part sets parameters for the signal and data processing and displays the navigation results. The signal and data generation part and signal and data processing part are designed to satisfy the requirements of the UI for a performance evaluation of the navigation system. In order to show the usefulness of the proposed UI design method, parameters of the signal and data generation and the signal and data processing are set through the LabVIEW-based UI, and the Global Positioning System (GPS) signal and inertial measurement unit data generation results and the navigation results of a GPS Software Defined Receiver (SDR) and inertial navigation system are confirmed. The implementation results show that the proposed UI design method helps users conduct an effective performance evaluation of navigation systems.

Performance Analysis of Array Processing Techniques for GNSS Receivers under Array Uncertainties

  • Lee, Sangwoo;Heo, Moon-Beom;Sin, Cheonsig;Kim, Sunwoo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.2
    • /
    • pp.43-51
    • /
    • 2017
  • In this study, the effect of the steering vector model mismatch due to array uncertainties on the performance of array processing was analyzed through simulation, along with the alleviation of the model mismatch effect depending on array calibration. To increase the reliability of the simulation results, the actual steering vector of the array antenna obtained by electromagnetic simulation was used along with the Jahn's channel model, which is an experimental channel model. Based on the analysis of the power spectrum for each direction, beam pattern, and the signal-to-interference-plus-noise ratio of the beamformer output, the performance deterioration of array processing due to array uncertainties was examined, and the performance improvement of array processing through array calibration was also examined.

Monitoring System Design for the GPS/INS Integrated Navigation System (GPS/INS 통합 항법 시스템용 모니터링 시스템 설계)

  • 한상재;오상헌;황동환;이상정
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.3
    • /
    • pp.242-250
    • /
    • 2003
  • We propose the monitoring system scheme for the CPS/INS integrated navigation system. The design requirements of the monitoring system are suggested and the software scheme based on GUI is proposed. The proposed monitoring system consists of an I/O interface part, a navigation data display part, and a post-processing part. The I/O interface part is responsible for data communication between the monitoring system and a navigation computer unit. The navigation data display part provides various display methods to show the navigation data to user in real-time. The post-processing part collects the navigation data to analyze the performance of navigation system. The proposed monitoring system software was developed using the Visual C++ programming language and a van test was carried out to demonstrate the real-time operation of the monitoring system. The test result shows that the proposed monitoring system can be effectively applied to the CPS/INS integrated navigation system.

A Study on Multi-Bit Processing Scheme of GPS Receiver for Fail-Safe Seaway (Fail-Safe Seaway를 위한 GPS 수신기의 다중비트처리기법 연구)

  • Cho Deuk-Jae;Oh Se-Woong;Suh Sang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.29 no.10 s.106
    • /
    • pp.877-882
    • /
    • 2005
  • It is necessary that Fail-Safe Seaway technology providing a continuous navigation solution though fault of navigation system is occurred in sea. This paper focus on signal processing of GPS receiver, one of receivers using the software radio technology to implement a integrated radio navigation system including satellite-based and ground-based navigation systems. It is difficult to implement the software GPS receivers using a commercial processor because of the heavy computational burden for processing the GPS signals in real time. This paper proposes an efficient multi-bit GPS signal processing scheme to reduce the computational burden for processing the GPS signals in the software GPS receiver. The proposed scheme uses a compression concept of the multi-bit replica signals and patterned look-up table method to generate the correlation value between the GPS signals and the replica signals.

A Study on Multi-Bit Processing Scheme of GPS Receiver for Fail-Safe Seaway (Fail-Safe Seaway를 위한 GPS 수신기의 다중비트처리기법 연구)

  • Cho Deuk-Jae;Oh Se-Woong;Suh Sang-Hyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.37-42
    • /
    • 2005
  • It is necessary that Fail-Safe Seaway technology providing a continuous navigation solution though fault of navigation system is occurred in sea. This paper focus on signal processing of GPS receiver, one of receivers using the software radio technology to implement a integrated radio navigation system including satellite-based and ground-based navigation systems. It is difficult to implement the software GPS receivers using a commercial processor bemuse of the heavy computational burden for processing the GPS signals in real time. This paper proposes an efficient multi-bit GPS signal processing scheme to reduce the computational burden for processing the GPS signals in the software GPS receiver. The proposed scheme uses a compression concept of the multi-bit replica signals and patterned look-up table method to generate the correlation value between the GPS signals and the replica signals.

  • PDF

Precise Positioning of Autonomous Underwater Vehicle in Post-processing Mode

  • Felski, Andrzej
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.513-517
    • /
    • 2006
  • Autonomous Underwater Vehicles plays specific role in underwater investigation. Generally, this kind of vehicles will move along a planned path for sea bottom or underwater installations inspections, search for mineral deposits along shelves, seeking lost items including bottom mines or for hydrographic measurements. A crucial barrier for it remains the possibility of precise determination of their underwater position. Commonly used radionavigation systems do not work in such circumstances or do not guarantee the required accuracies. In the paper some new solution is proposed on the assumption that it is possible to increase the precision by certain processing of a combination of measurements conducted by means of different techniques. Objective of the paper is the idea of navigation of AUV which consists of two phases: firstly a trip of AUV along pre-planned route and after that postprocessed transformation of collected data in post-processing mode. During the processing of collected data the modern adjustment methods have been applied, mainly estimation by means of least squares and M-estimation. Application of these methods should be associated with the measuring and geometric conditions of navigational tasks and thus suited for specific scientific and technical problems of underwater navigation. The first results of computer aided investigation will be presented and the basic scope of these application and possible development directions will be indicated also. The paper is prepared as an partial results of the works carried out within a framework of the research Project: 'Improvement of the Precise Underwater Vehicle Navigation Methods' financed by the Polish Ministry of Education and Science (No 0 T00A 012 25).

  • PDF

Ontology based Guided Navigation Aid System for preparatory trip on cyber space (사전답사를 위한 온톨로지 기반의 Guided Navigation Aid System)

  • Hur, Seung-Ho;Kim, Hak-Keun;Lim, Soon-Bum;Choy, Yoon-Chul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11a
    • /
    • pp.617-620
    • /
    • 2003
  • 3D 가상환경 개발 초기 단계에서부터 효과적인 Navigation을 위해서 Navigation Aid에 대한 연구가 꾸준히 진행되어왔으나 환경 구조의 중요 지점만을 정리한 요약 형태의 정보를 제공하는 방법이 주를 이루고 있어서, Navigation 대상 환경에 익숙지 않은 사용자에게 환경구조를 이해하게 하는 인지적 부담을 주고 있다. 본 논문에서는 사용자의 navigation을 위한 인지적 부담을 최소화할 수 있도록 토픽맵을 적용하여 투어코스를 자동생성 하는 시스템을 제안한다. 본 Navigation Aid 시스템은 가상환경 구조를 기억하거나 시스템 조작을 위한 일상적인 문제점에서 벗어나 본래의 목적에 집중할 수 있을 것이다. 가상환경에서의 Navigation 경험을 통해 현실세계에 존재하는 환경을 사전방문 하거나 효과적인 투어코스를 선정하는데 도움을 줄 수 있을 것으로 기대된다.

  • PDF

Through analysis of core services of E-Navigation Korean E-Navigation Improvement Plan - Focusing on Marine Accident Prevention (E-Navigation의 핵심 서비스 분석을 통한 한국형 E-Navigation 개선방안 - 해양사고예방을 중심으로)

  • Yu, Hae-Jeong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.1401-1404
    • /
    • 2021
  • 안전사고들로 인한 인명피해 때문에 해상에서의 안전에 대한 관심은 크게 증가하였고, 다양한 정보들을 종합적이고 체계적으로 관리하기 위해 통합 해양안전 정보체계인 e-Navigation이 태동하게 되었다. 우리나라는 2016년부터 5년 동안 한국형 e-Navigation 서비스를 개발하여 전 연안의 선박을 대상으로 제공할 계획을 갖고 있다. 본 논문에서는 현재 한국형 e-Navigation 서비스에 대하여 간단히 살펴보고 제1핵심과제인 한국형 e-Navigation 서비스를 위한 핵심기술 연구개발의 목표인 사고예방의 효율성 제고를 위해 기존서비스 활용 및 데이터 처리 개선 방안에 대해 고찰해보려고 한다.

Design and Implementation of a GNSS Receiver Development Platform for Multi-band Signal Processing (다중대역 통합 신호처리 가능한 GNSS 수신기 개발 플랫폼 설계 및 구현)

  • Jinseok Kim;Sunyong Lee;Byeong Gyun Kim;Hung Seok Seo;Jongsun Ahn
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.149-158
    • /
    • 2024
  • Global Navigation Satellite System (GNSS) receivers are becoming increasingly sophisticated, equipped with advanced features and precise specifications, thus demanding efficient and high-performance hardware platforms. This paper presents the design and implementation of a Field-Programmable Gate Array (FPGA)-based GNSS receiver development platform for multi-band signal processing. This platform utilizes a FPGA to provide a flexible and re-configurable hardware environment, enabling real-time signal processing, position determination, and handling of large-scale data. Integrated signal processing of L/S bands enhances the performance and functionality of GNSS receivers. Key components such as the RF frontend, signal processing modules, and power management are designed to ensure optimal signal reception and processing, supporting multiple GNSS. The developed hardware platform enables real-time signal processing and position determination, supporting multiple GNSS systems, thereby contributing to the advancement of GNSS development and research.