• Title/Summary/Keyword: Navigation Potential Field

Search Result 57, Processing Time 0.027 seconds

Optimal Path Planning of Autonomous Mobile Robot Utilizing Potential Field and Fuzzy Logic (퍼지로직과 포텐셜 필드를 이용한 자율이동로봇의 최적경로계획법)

  • Park, Jong-Hoon;Lee, Jae-Kwang;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.11-14
    • /
    • 2003
  • In this paper, we use Fuzzy Logic and Potential field method for optimal path planning of an autonomous mobile robot and apply to navigation for real-time mobile robot in 2D dynamic environment. For safe navigation of the robot, we use both Global and Local path planning. Global path planning is computed off-line using sell-decomposition and Dijkstra algorithm and Local path planning is computed on-line with sensor information using potential field method and Fuzzy Logic. We can get gravitation between two feature points and repulsive force between obstacle and robot through potential field. It is described as a summation of the result of repulsive force between obstacle and robot which is considered as an input through Fuzzy Logic and gravitation to a feature point. With this force, the robot fan get to desired target point safely and fast avoiding obstacles. We Implemented the proposed algorithm with Pioneer-DXE robot in this paper.

  • PDF

Large-Scale Realtime Crowd Simulation Using Image-Based Affordance and Navigation Potential Fields (이미지 기반의 유도장과 항해장을 활용한 실시간 대규모 군중 시뮬레이션)

  • Ok, Soo-Yol
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.9
    • /
    • pp.1104-1114
    • /
    • 2014
  • In large-scale crowd simulations, it is very important for the decision-making system of manipulating interactive behaviors to minimize the computational cost for controlling realistic behaviors such as collision avoidance. In this paper, we propose a large-scale realtime crowd simulation method using the affordance and navigation potential fields such as attractive and repulsive forces of electromagnetic fields. In particular, the model that we propose locally handles the realistic interactions between agents, and thus radically reduces the cost of expensive computation on interactions which has been the most problematic in crowd simulation. Our method is widely applicable to the expression and analysis of various crowd behaviors that are needed in behavior control in computer games, crowd scenes in movies, emergent behaviors of evacuation, etc.

Navigation Technique of Unmanned Vehicle Using Potential Field Method (포텐셜 필드 기법을 이용한 무인차량의 자율항법 개발)

  • Lee, Sang-Won;Moon, Young-Geun;Kim, Sung-Hyun;Lee, Min-Cheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.8-15
    • /
    • 2011
  • This paper proposes a real-time navigation algorithm which integrates the artificial potential field (APF) for an unmanned vehicle in the unknown environment. This approach uses repulsive potential function around the obstacles to force the vehicle away and an attractive potential function around the goal to attract the vehicle. In this research, laser range finder is used as range sensor. An obstacle detected by the sensor creates repulsive vector. Differential global positioning system (DGPS) and digital compass are used to measure the current vehicle position and orientation. The measured vehicle position is also used to create attractive vector. This paper proposes a new concept of potential field based navigation which controls unmanned vehicle's speed and steering. The magnitude of repulsive force based on the proposed algorithm is designed not to be over the magnitude of attractive force while the magnitude is increased linearly as being closer to obstacle. Consequently, the vehicle experiences a generalized force toward the negative gradient of the total potential. This force drives the vehicle downhill towards its goal configuration until the vehicle reaches minimum potential and it stops. The effectiveness of the proposed APF for unmanned vehicle is verified through simulation and experiment.

Mobile Robot navigation using an Multi-resolution Electrostatic Potential Filed

  • Kim, Cheol-Taek;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.690-693
    • /
    • 2004
  • This paper proposes a multi-resolution electrostatic potential field (MREPF) based solution to the mobile robot path planning and collision avoidance problem in 2D dynamic environment. The MREPF is an environment method in calculation time and updating field map. The large scale resolution map is added to EPF and this resolution map interacts with the small scale resolution map to find an optimal solution in real time. This approach can be interpreted with Atlantis model. The simulation studies show the efficiency of the proposed algorithm.

  • PDF

Automatic collision avoidance algorithm based on improved artificial potential field method

  • Wang Zongkai;Im Namkyu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.265-266
    • /
    • 2023
  • With the development of science and technology, various research on ship collision avoidance has also developed rapidly. The research and development of ship collision avoidance technology has also received high attention from many researchers. This paper proposes a new collision avoidance algorithm for ships based on the artificial force field collision avoidance method. Using the simulation platform, the simulation results show that ships can successfully avoid collision in open water under single ship and multi ship situations, and the research results are relatively ideal.

  • PDF

Study on Path Planning for Autonomous Mobile Robot using Potential Field (Potential Field를 이용한 자율이동로봇의 경로 계획에 관한 연구)

  • Jung, Kwang-Min;Lee, Hea-Jae;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.737-742
    • /
    • 2009
  • The popularity of autonomous mobile robots have been rapidly increasing due to their new emerging application area, from room cleaning, tourist guidance to space explorations. However, the development of a satisfactory control algorithm that will enable the autonomous mobile robots to navigate safely especially in dynamic environments is still an open research problem. In this paper, a newly proposed potential field based control method is implemented, analyzed, and improvements are suggest based on experimental results obtain from computer simulations. The experimental results are presented to show the effectiveness of the behavior-based control using the proposed potential field generation technique.

Path Planning for Autonomous Mobile Robot using Potential Field

  • Jung, Kwang-Min;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.315-320
    • /
    • 2009
  • The popularity of autonomous mobile robots have been rapidly increasing due to their new emerging application areas, from room cleaning, tourist guidance to space explorations. However, the development of a satisfactory control algorithm that will enable the autonomous mobile robots to navigate safely especially in dynamic environments is still an open research problem. In this paper, a newly proposed potential field based control method is implemented, analyzed, and improvements are suggested based on experimental results obtained from simulations. The experimental results are presented to show the effectiveness of the behavior-based control using the proposed potential field generation technique.

The Cooperate Navigation for Swarm Robot Using Centroidal Voronoi Tessellation (무게중심 보로노이 테셀레이션을 이용한 군집로봇의 협조탐색)

  • Bang, Mun-Seop;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.130-134
    • /
    • 2012
  • In this paper, we propose a space partitioning technique for swarm robots by using the Centroidal Voronoi Tessellation. The proposed method consists of two parts such as space partition and collision avoidance. The space partition for searching a given space is carried out by a density function which is generated by some accidents. The collision avoidance is implemented by the potential field method. Finally, the numerical experiments show the effectiveness and feasibility of the proposed method.

Autonomous flight Algorithm Design (자율형 운항 알고리즘 설계 연구)

  • Lee, Dae-Yong;Kang, Ja-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.1
    • /
    • pp.122-130
    • /
    • 2012
  • Airborne separation assurance is a key requirement for Free Flight. This paper is to propose autonomous flight algorithm, such as extended authority of delegation, efficiency of airspace issue to deal with the empirical solution for free flight, and to measure flight efficiency and conflict detection and resolution (CD&R) by utilizing flight performance data under the two circumstances of scenario with the modeling of proposed algorithm and potential field algorithm. The results show that the autonomous flight algorithm is superior to the potential field algorithm under the circumstances of free flight airspace in terms of algorithm performance, CD&R, and flight efficiency.

Development of Potential-Function Based Motion Control Algorithm for Collision Avoidance Between Multiple Mobile Robots (포텐셜함수(Potential Function)를 이용한 자율주행로봇들간의 충돌예방을 위한 주행제어 알고리즘의 개발)

  • 이병룡
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.107-115
    • /
    • 1998
  • A path planning using potential field method is very useful for the real-time navigation of mobile robots. However, the method needs high modeling cost to calculate the potential field because of complex preprocessing, and mobile robots may get stuck into local minima. In this paper, An efficient path planning algorithm for multiple mobile robots, based on the potential field method, was proposed. In the algorithm. the concepts of subgoals and obstacle priority were introduced. The subgoals can be used to escape local minima, or to design and change the paths of mobile robots in the work space. In obstacle priority, all the objects (obstacles and mobile robots) in the work space have their own priorities, and the object having lower priority should avoid the objects having higher priority than it has. In this paper, first, potential based path planning method was introduced, next an efficient collision-avoidance algorithm for multiple mobile robots, moving in the obstacle environment, was proposed by using subgoals and obstacle priority. Finally, the developed algorithm was demonstrated graphically to show the usefulness of the algorithm.

  • PDF