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Abstract 

The popularity of autonomous mobile robots have been rapidly increasing due to their new emerging application areas, from room cleaning, 

tourist guidance to space explorations. However, the development of a satisfactory control algorithm that will enable the autonomous mobile 

robots to navigate safely especially in dynamic environments is still an open research problem. In this paper, a newly proposed potential field 

based control method is implemented, analyzed, and improvements are suggested based on experimental results obtained from simulations. 

The experimental results are presented to show the effectiveness of the behavior-based control using the proposed potential field generation 

technique. 
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1. Introduction 

 

With the exponential increase in the scientific knowledge 

and thus technology in recent years and in particular with the 

advent of computers, stories in science fiction books started to 

become true, and robots started to appear in daily life. Robots 

can help human beings; they can clean the room, disarm land 

mines, make explorations on the Moon, help surgeons in 

operations, work in factory environments, run production lines 

doing the jobs hard, dangerous or boring for humans. One of 

the fundamental challenges in robotics is motion or path 

planning, which means to generate a continuous path for a 

given robot between an initial and a goal configuration of the 

robot. Along this path, the robot must not intersect given 

forbidden regions, which are usually obstacles. Different 

versions of the motion planning problem correspond to the 

cases where the obstacles are stationary or moving and where 

the system of objects consists of a point, polygonal object, a 

single polyhedral object or a set of polygonal. Practical 

instances of the motion-planning problem occur frequently in 

robot-based assembly operations where a continuous trajectory 

must be planned for a robot such that collision with 

neighboring objects and other robots in the same workspace is 

avoided and the structural limits of the joint actuators are not 

violated. Similar problems are also encountered in the 

automatic navigation of vehicles in constrained environments, 

missile guidance, VLSI circuit layout and aircraft routing. Due 

to its widespread application, there is a lot of interest in this 

problem in the academic community and various approaches to 

its solution have been proposed [7]. 

1.1 Deliberative Control 

In deliberative control, the robot uses all of the available 

sensory information, and all of the internally stored knowledge, 

to reason about what actions to take next. The knowledge must 

be consistent, reliable and certain. In a dynamic world, where 

the objects are moving arbitrarily, it is dangerous to rely on 

past information that may no longer be valid. Representational 

world models are therefore generally constructed from both 

prior knowledge about environment and incoming sensor data 

in support of deliberation. When there is sufficient time to 

generate a plan and the world model is accurate, this approach 

allows the robot to act strategically, selecting the best course of 

action for a given situation. The advent of alternative 

architectures was driven by the need for faster yet appropriate 

action in response to the demands of complex and dynamically 

changing real-world environments. 

 

1.2 Reactive Control 

Reactive control is a technique for tightly coupling sensory 

inputs and actuator outputs, typically involving no intervening 

reasoning to allow the robot to respond very quickly to 

changing and unstructured environments. Reactive control is 

inspired by the biological notion of stimulus-response. Use of 

abstract representational knowledge is avoided in the 

generation of a response, and the robot reacts directly to the 

world as it is sensed. Mapping between the stimulus domain 

and response range is achieved by discrete encoding in the 

form of if-then-else; or continuous functional encoding 

allowing a robot to have infinite space of potential reactions to 

its world. Thus, rule-based methods involving a minimal 

amount of computation, and no internal representations or 

knowledge of the world are typically used. However, 

limitations to pure reactivity include the inability to store 

information or have memory or internal representations of the 

world, and therefore the inability to learn and improve over 

time. For example, reactive control is the best choice for 
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environments demanding immediate response, but such speed 

of reaction comes at the price of being myopic, not looking into 

the past or the future. 

 

1.3 Hybrid Control 

Hybrid control aims to combine the best aspects of reactive 

and deliberative control. As a result, hybrid control systems 

contain two different components, the reactive condition-action 

rules and the deliberative ones, which must interact in order to 

produce a coherent output. Hybrid deliberative/reactive robotic 

architectures have recently emerged combining aspects of 

traditional AI symbolic methods and their use of abstract 

representational knowledge, but maintaining the goal of 

providing the responsiveness, robustness, and flexibility of 

reactive system. 

 

1.4 Behavior-based Control 

Behavior-based control employs a set of distributed, 

interacting modules, called behaviors, that collectively achieve 

the desired system level behavior. These behaviors are often 

reactive in nature, since reactive rules can and often do form 

components of simple behaviors. There is a distinction between 

activation conditions, which allow the behavior to generate 

actions, and stimuli, from which actions are generated. 

Behavior-based systems are typically designed so the effects of 

the behaviors interact largely in the environment rather than 

internally through the system, taking advantage of the richness 

of the interaction dynamics by exploiting the properties of 

situatedness. These dynamics are sometimes called emergent 

behaviors because they emerge from the interactions and are 

not internally specified by the robot’s program. For example, a 

robot that flocks with other robots may not have a specific 

flocking behavior. Instead, its interaction with the environment 

and other robots may result in flocking, although its only 

behaviors may be avoid-collision, stay-close-to-the-group, and 

keep-going. 

For such an approach to work, a behavior-based system must 

resolve the issue of choosing a particular action or behavior 

from multiple options, a process know as action selection or the 

behavior coordination problem. This is one of the central 

design challenges of behavior-based systems[4]. 

 

 

2. Proposed Control Algorithm 

 

2.1 Mathematical Model of Robot 

The robot used in this work is differential drive mobile robot. 

It is non-holonomic, having restrictions in the way it can move, 

due to kinematic or dynamic constraints, such as limited 

turning ability or momentum at high velocities. Assuming no 

slip at the tires, the kinematic model of such a robot is given by 
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Where ν  and ω  are the translational and rotational 

velocities of the robot, RV and LV  are the right and left wheel 

velocities, L  is the inter wheel distance, and ϕ  denotes the 

orientation of the robot as shown in Fig. 1. 

 

 

Fig. 1. Kinematic model of the robot 

 

2.2 Potential Field Method 

Probably none of the robot navigation methods has attracted 

so great an interest from researchers as potential fields method 

[3], such that so many variations of the method have been 

developed and used [1][2][5][6]. The methods was developed 

as a basis for generating smooth trajectories for both mobile 

and manipulator robotic systems. Separate attractive and 

repelling potential fields are constructed to represent the 

relationship between the robot and each of the objects within 

the object’s sensory range. These fields are then combined to 

yield a single global field. A smooth trajectory is computed 

based upon the gradient within the globally computed potential 

field. 

Drawing from the field theory concept in physics, this 

method models obstacles as emitting a repelling force and the 

goal point as emitting an attractive force on the robot. 

Navigation is performed by moving the robot so as to minimize 

the potential energy. 

This approach assumes knowledge of the type of obstacles in 

the environment and in the planning phase polygons or spheres 

approximate these known obstacles. The environment in the 

original formulation of this idea was assumed to be static, 

however, there have been adaptations to use this approach for 

dynamic environments. Potentials are associated with the 

objects in the environment as and when it is encountered. 

Fig. 2(a) shows an example with repelling forces from 

obstacles and walls, plus a superimposed general field direction 

from start to goal. And Fig. 2(b) exemplifies the potential field 

generation steps in the form of 3D surface plots. 
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Fig. 2. (a) Potential field as 2D surfaces (b) Potential field as 

3D surfaces 

 

2.3 Formulation of Potential Field 

As described in the previous chapter, the main idea of 

potential field method is to assume repelling forces from 

obstacles and attractive forces from the goal to the robot. The 

repelling force is inversely proportional to the square of the 

distance and calculated as, 

 2
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Where A  is a constant scaling factor, n  is the number of 

obstacles, id  is the distance between obstacle i  and the 

robot, îr  is the direction vector from robot to representative 

point of obstacle(e.g., center of obstacle, point of obstacle 

closest to the robot). This is the original repelling force 

formulation of the potential field and it requires the knowledge 

of all obstacles in the environment. The magnitude of the 

repulsive force increases significantly when the robot is close 

to the obstacle, which is the main idea for avoiding the obstacle. 

The attractive force of the goal is in the form. 
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Where B  is similarly a scaling factor, d  is the distance 

from robot to the goal, and r̂  is the direction vector from 

robot to goal. 

After calculating each repelling and attractive force, the total 

force on the robot is calculated by the vector sum of these 

individual forces, and robot moves in the direction of the 

resultant force vector in Fig. 3. 

 

 
Fig. 3. Potential field forces on the robot 

2.4 Design of a Layered Control System 

In the proposed new approach a layered structure is adopted, 

such that instead of adding up the attractive and repelling 

forces as in classical potential field method, these forces are 

treated separately in parallel layers, Obstacle Avoidance (OA), 

Drive Toward Goal (DTG) and Drive Toward Landmark 

(DTL) in Fig. 4. Each layer produces its own output using 

potential field method and these outputs are later combined by 

the behavior arbitration layer to result in the reference 

orientation of the robot for obstacle avoidance and goal 

tracking. 

 

 

Fig. 4. Layered control structure 

 

2.5 Obstacle Avoidance, Drive Toward Goal and Drive 

Toward Landmark Layer 

In obstacle avoidance layer, using the outputs of the distance 

sensors, the net repelling force is calculated and decomposed to 

its components, one along the direction of motion of the robot 

and one perpendicular to it. 
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For safe navigation, the robot should try to keep the force 

component along its direction of motion, rF , minimum or 

ideally zero. This can be achieved by changing the orientation 

of the robot, since the force components are dependent on the 

orientation. To this end, a controller can be used for the 

optimization. The rate of change of the force components with 

respect to the obstacle angle is 
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Then the controls can be chosen as, 
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and errors to be minimized are, 
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Now, any suitable control method can be utilized for the 

control of this first order system. In [6], sliding mode controller 

is used with positive definite Lyapunov function 
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/ 2 0Te eγ = ⋅ ≥ . In this work, a simple proportional controller 

is used, resulting in the following controls. 
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where prK  and pK θ  are proportional control gains. 

Finally, using equations (5) and (8) together, the desired 

orientation of the robot for an obstacle free path can be 

calculated. 
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Obviously due to the function arctan() , the output will be in 

the range 90− o
 to 90+ o

. 

Similar to the obstacle avoidance layer, an attractive force is 

calculated and decomposed to its components in the direction 

of motion and perpendicular to it. Contrary to obstacle 

avoidance layer, this time the force along the motion direction 

must be maximized and the perpendicular force must be 

minimized. As a result, we can get the desired orientation of 

robot for goal or landmark tracking as follows. 
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2.6 Behavior Arbitration Layer 

Having calculated three reference orientations, one for 

obstacle avoidance and the other for goal or landmark tracking, 

the resultant reference orientation of robot should be calculated 

by the combination of these references, which will be done by 

the behavior arbitration layer being central to the success or 

failure of the algorithm. The three outputs might be conflicting. 

However, the behavior arbitration should combine them in such 

a way that both obstacle avoidance and goal tracking are 

partially fulfilled. Dynamic weights that are calculated from the 

geometric relations between the robot, goal and obstacle are 

assigned to the outputs of the two layers, and the overall 

reference orientation is calculated by the addition of them. 
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The weight α  and β  in equation (11) are complementary, 

1α β+ = , and are calculated by considering turnθ ′  the angle 

between the direction of velocity vector of the robot repelling 

force vector on the robot in Fig. 5. This classical method might 

be working well in the simulations where inertia of the robot is 

probably not considered, time delay between successive 

samples is small, and there is no noise. The problem of this 

method occurs as follows : At the instant shown, the robot is 

moving parallel to the obstacle, in which case the output of OA 

layer has no importance since its weight is zero. However, due 

to the position of the goal or landmark, the DTG or DTL layer 

produces a large output as orientation reference, and since its 

weight is, 1β = , the resulting reference orientation for the 

robot will be large and in the direction of the goal. This will 

cause the robot to turn fast in the reference direction. If the 

robot has large inertia and the sampling time of sensor is also 

large, this situation will cause the robot to hit the obstacle, or at 

best will cause severe directional oscillations. 

The new turning angle turnθ  is calculated as the difference 

between the angle to obstacle and angle to goal point, as shown 

in Fig. 5 for goal point 1. 
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This formulation shows that the weight of obstacle will be 

large since the turning angle is small according to classical 

method, and the robot will continue to turn around it until it 

comes to a position where the goal is directly in front of it, like 

goal point 2. 

Another problem, which is also inherent in potential field 

method, is that the robot can not reach the goal if it is located 

too close to an obstacle, due to large repelling forces in the 

vicinity of obstacle resulting in large reference orientation 

changes calculated by the OA layer. This can be relieved if the 

behavior arbitration layer takes into account obstacle and goal 

distances. 

 

 

Fig. 5. Turning angle in behavior arbitration 

 

If goal is close to an obstacle, since the robot is approaching 

the obstacle, it will be repelled and forced to go away even 

though the goal is in front of it. In such a case, if behavior 

arbitration layer sets the weight of OA layer to zero, the robot 

will be able to reach the goal. This approach only relieves the 

problem, since for example, if the goal were on the other side 

of the obstacle, the distance to the goal would not be smaller 

while the robot is turning around the obstacle, and it will enter 

an infinite loop turning around the obstacle forever and never 

reaching the goal.  

The main idea of the design of a behavior arbitration layer is 

used to the 3-10-2 neural networks. This system has turnθ ,  

obsd (the average distance between obstacles and robot) and 

goal or landmarkd (the distance between the goal or landmark 

position and robot) as the input, and the output is α (the 
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weight parameter of ref

OA
θ ) in Fig. 6. First, this system can be 

learning as equation (12). Also, a behavior arbitration layer can 

be possible continuously through reinforcement learning. 

 

2.7 Low-level Motion Control Layer 

Now that the reference orientation of robot has been 

calculated, it is time to drive the robot according to this 

reference for safe navigation. The obstacle avoidance and drive 

toward goal or landmark parallel layers give only the reference 

orientation of the robot and does not tell anything related to 

speed of the robot. In the original form of potential field 

method, the velocity is taken to be proportional to the 

magnitude of the resultant force. If the attractive force is 

chosen to be proportional to the square of the distance from 

robot to goal or landmark point, the velocity becomes 

proportional to the distance to the goal or landmark. 

Accordingly, robot should drive fast when it is far away, and 

should naturally stop when it reaches the goal. There is of 

course an upper limit for the velocity for safe navigation. A 

different approach is implemented in this work, and it will be 

discussed later in this chapter. 

Having the reference orientation, 
refθ , and velocity, 

refV , a 

motion controller can be implemented according to the local 

coordinate system of the robot to calculate the individual wheel 

velocities assuming the robot is as defined in section A. 

Similar to the 
refθ  calculations, separate controls are 

implemented in rω , 
ωθ  components. Proportional controller 

is used instead of sliding mode controller. First, errors are 

calculated as follows. 

 ,ref ref

r
e r r eθ θ θ= − = −  (13) 

Where r  is the distance from robot to goal or landmark 

point, 0refr = , since the desired distance is zero; θ  is 

reference orientation generated by behavior arbitration layer, 

and 
refθ  is zero. Fig. 6 illustrates the parameters. 

Controls are chosen as 
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Where RV  and LV  are right and left wheel velocity 

references to be used by the controller on the robot, L  is the 

robot’s interwheel distance. Then the controls are calculated 

using a proportional controller. 
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Where prK  and pK θ  are proportional control gains. 

Finally, wheel velocity references can be calculated. 
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3. Simulations 

 

In this section, simulation results are shown to confirm the 

validity of the proposed method. The goal of the simulation is 

to successfully reach for each robot to the goal position. In Fig. 

6, the first experiment is implemented in the environment, 

which is a circular obstacle between a robot and a goal. This 

experiment is shown the optimal path and the reduced 

oscillation when a robot pass a circular obstacle. In Fig. 7, the 

second experiment is implemented in the environment, which is 

a U-shaped obstacle between a robot and a goal. This 

experiment is shown that a robot overcomes trap situation. In 

Fig. 8, the third experiment is implemented in the environment, 

which is a combination of circular obstacles. This experiment is 

shown that a robot overcomes no passage between closely 

spaced obstacles. In Fig. 9, the forth experiment is 

implemented in the environment, in which another robot and 

combination of circular obstacles exist. This experiment is 

shown the performance in dynamic environment. The proposed 

algorithm for navigation is shown the good performance 

through these experiments. 

 

 
Fig. 6. 1st experiment 

 

 

Fig. 7. 2nd experiment 
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Fig. 8. 3rd experiment 

 

 

Fig. 8. 4th experiment 

 

 

4. Conclusion 

 

In this work, a potential field based autonomous mobile 

robot navigation algorithm is implemented on a computer 

simulation system. Modifications for improvements, and better 

performance are suggested in the light of experimental results. 

The results are evaluated and the shortcomings of experimental 

setup and algorithms used are stated. The performance of the 

system is satisfactory proposing solutions to the problematic 

cases of especially potential field based robot navigation 

algorithms and implementations, such as reducing oscillations, 

ability to pass through closely spaced obstacles, and navigation 

among complex shaped obstacles. In our application of the 

potential model for mobile robots, however, we still encounter 

the problem of concavities in the potential field. In future work, 

we will study on potential field model more suitable for mobile 

robot navigation tasks and apply the proposed navigation 

algorithm to real robot system. 
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	1. Introduction
	With the exponential increase in the scientific knowledge and thus technology in recent years and in particular with the advent of computers, stories in science fiction books started to become true, and robots started to appear in daily life. Robots can help human beings; they can clean the room, disarm land mines, make explorations on the Moon, help surgeons in operations, work in factory environments, run production lines doing the jobs hard, dangerous or boring for humans. One of the fundamental challenges in robotics is motion or path planning, which means to generate a continuous path for a given robot between an initial and a goal configuration of the robot. Along this path, the robot must not intersect given forbidden regions, which are usually obstacles. Different versions of the motion planning problem correspond to the cases where the obstacles are stationary or moving and where the system of objects consists of a point, polygonal object, a single polyhedral object or a set of polygonal. Practical instances of the motion-planning problem occur frequently in robot-based assembly operations where a continuous trajectory must be planned for a robot such that collision with neighboring objects and other robots in the same workspace is avoided and the structural limits of the joint actuators are not violated. Similar problems are also encountered in the automatic navigation of vehicles in constrained environments, missile guidance, VLSI circuit layout and aircraft routing. Due to its widespread application, there is a lot of interest in this problem in the academic community and various approaches to its solution have been proposed [7].
	1.1 Deliberative Control
	In deliberative control, the robot uses all of the available sensory information, and all of the internally stored knowledge, to reason about what actions to take next. The knowledge must be consistent, reliable and certain. In a dynamic world, where the objects are moving arbitrarily, it is dangerous to rely on past information that may no longer be valid. Representational world models are therefore generally constructed from both prior knowledge about environment and incoming sensor data in support of deliberation. When there is sufficient time to generate a plan and the world model is accurate, this approach allows the robot to act strategically, selecting the best course of action for a given situation. The advent of alternative architectures was driven by the need for faster yet appropriate action in response to the demands of complex and dynamically changing real-world environments.

	1.2 Reactive Control
	Reactive control is a technique for tightly coupling sensory inputs and actuator outputs, typically involving no intervening reasoning to allow the robot to respond very quickly to changing and unstructured environments. Reactive control is inspired by the biological notion of stimulus-response. Use of abstract representational knowledge is avoided in the generation of a response, and the robot reacts directly to the world as it is sensed. Mapping between the stimulus domain and response range is achieved by discrete encoding in the form of if-then-else; or continuous functional encoding allowing a robot to have infinite space of potential reactions to its world. Thus, rule-based methods involving a minimal amount of computation, and no internal representations or knowledge of the world are typically used. However, limitations to pure reactivity include the inability to store information or have memory or internal representations of the world, and therefore the inability to learn and improve over time. For example, reactive control is the best choice for environments demanding immediate response, but such speed of reaction comes at the price of being myopic, not looking into the past or the future.

	1.3 Hybrid Control
	Hybrid control aims to combine the best aspects of reactive and deliberative control. As a result, hybrid control systems contain two different components, the reactive condition-action rules and the deliberative ones, which must interact in order to produce a coherent output. Hybrid deliberative/reactive robotic architectures have recently emerged combining aspects of traditional AI symbolic methods and their use of abstract representational knowledge, but maintaining the goal of providing the responsiveness, robustness, and flexibility of reactive system.

	1.4 Behavior-based Control
	Behavior-based control employs a set of distributed, interacting modules, called behaviors, that collectively achieve the desired system level behavior. These behaviors are often reactive in nature, since reactive rules can and often do form components of simple behaviors. There is a distinction between activation conditions, which allow the behavior to generate actions, and stimuli, from which actions are generated. Behavior-based systems are typically designed so the effects of the behaviors interact largely in the environment rather than internally through the system, taking advantage of the richness of the interaction dynamics by exploiting the properties of situatedness. These dynamics are sometimes called emergent behaviors because they emerge from the interactions and are not internally specified by the robot’s program. For example, a robot that flocks with other robots may not have a specific flocking behavior. Instead, its interaction with the environment and other robots may result in flocking, although its only behaviors may be avoid-collision, stay-close-to-the-group, and keep-going.
	For such an approach to work, a behavior-based system must resolve the issue of choosing a particular action or behavior from multiple options, a process know as action selection or the behavior coordination problem. This is one of the central design challenges of behavior-based systems[4].


	2. Proposed Control Algorithm
	2.1 Mathematical Model of Robot
	The robot used in this work is differential drive mobile robot. It is non-holonomic, having restrictions in the way it can move, due to kinematic or dynamic constraints, such as limited turning ability or momentum at high velocities. Assuming no slip at the tires, the kinematic model of such a robot is given by
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	Where � and � are the translational and rotational velocities of the robot, �and � are the right and left wheel velocities, � is the inter wheel distance, and � denotes the orientation of the robot as shown in Fig. 1.

	2.2 Potential Field Method
	Probably none of the robot navigation methods has attracted so great an interest from researchers as potential fields method [3], such that so many variations of the method have been developed and used [1][2][5][6]. The methods was developed as a basis for generating smooth trajectories for both mobile and manipulator robotic systems. Separate attractive and repelling potential fields are constructed to represent the relationship between the robot and each of the objects within the object’s sensory range. These fields are then combined to yield a single global field. A smooth trajectory is computed based upon the gradient within the globally computed potential field.
	Drawing from the field theory concept in physics, this method models obstacles as emitting a repelling force and the goal point as emitting an attractive force on the robot. Navigation is performed by moving the robot so as to minimize the potential energy.
	This approach assumes knowledge of the type of obstacles in the environment and in the planning phase polygons or spheres approximate these known obstacles. The environment in the original formulation of this idea was assumed to be static, however, there have been adaptations to use this approach for dynamic environments. Potentials are associated with the objects in the environment as and when it is encountered.
	Fig. 2(a) shows an example with repelling forces from obstacles and walls, plus a superimposed general field direction from start to goal. And Fig. 2(b) exemplifies the potential field generation steps in the form of 3D surface plots.

	2.3 Formulation of Potential Field
	As described in the previous chapter, the main idea of potential field method is to assume repelling forces from obstacles and attractive forces from the goal to the robot. The repelling force is inversely proportional to the square of the distance and calculated as,
	� (2)

	Where � is a constant scaling factor, � is the number of obstacles, � is the distance between obstacle � and the robot, � is the direction vector from robot to representative point of obstacle(e.g., center of obstacle, point of obstacle closest to the robot). This is the original repelling force formulation of the potential field and it requires the knowledge of all obstacles in the environment. The magnitude of the repulsive force increases significantly when the robot is close to the obstacle, which is the main idea for avoiding the obstacle.
	The attractive force of the goal is in the form.
	� (3)

	Where � is similarly a scaling factor, � is the distance from robot to the goal, and � is the direction vector from robot to goal.
	After calculating each repelling and attractive force, the total force on the robot is calculated by the vector sum of these individual forces, and robot moves in the direction of the resultant force vector in Fig. 3.
	2.4 Design of a Layered Control System
	In the proposed new approach a layered structure is adopted, such that instead of adding up the attractive and repelling forces as in classical potential field method, these forces are treated separately in parallel layers, Obstacle Avoidance (OA), Drive Toward Goal (DTG) and Drive Toward Landmark (DTL) in Fig. 4. Each layer produces its own output using potential field method and these outputs are later combined by the behavior arbitration layer to result in the reference orientation of the robot for obstacle avoidance and goal tracking.

	2.5 Obstacle Avoidance, Drive Toward Goal and Drive Toward Landmark Layer
	In obstacle avoidance layer, using the outputs of the distance sensors, the net repelling force is calculated and decomposed to its components, one along the direction of motion of the robot and one perpendicular to it.
	� (4)

	For safe navigation, the robot should try to keep the force component along its direction of motion, �, minimum or ideally zero. This can be achieved by changing the orientation of the robot, since the force components are dependent on the orientation. To this end, a controller can be used for the optimization. The rate of change of the force components with respect to the obstacle angle is
	� (5)

	Then the controls can be chosen as,
	� (6)

	and errors to be minimized are,
	� (7)

	Now, any suitable control method can be utilized for the control of this first order system. In [6], sliding mode controller is used with positive definite Lyapunov function �. In this work, a simple proportional controller is used, resulting in the following controls.
	� (8)

	where � and � are proportional control gains.
	Finally, using equations (5) and (8) together, the desired orientation of the robot for an obstacle free path can be calculated.
	� (9)

	Obviously due to the function �, the output will be in the range � to �.
	Similar to the obstacle avoidance layer, an attractive force is calculated and decomposed to its components in the direction of motion and perpendicular to it. Contrary to obstacle avoidance layer, this time the force along the motion direction must be maximized and the perpendicular force must be minimized. As a result, we can get the desired orientation of robot for goal or landmark tracking as follows.
	� (10)


	2.6 Behavior Arbitration Layer
	Having calculated three reference orientations, one for obstacle avoidance and the other for goal or landmark tracking, the resultant reference orientation of robot should be calculated by the combination of these references, which will be done by the behavior arbitration layer being central to the success or failure of the algorithm. The three outputs might be conflicting. However, the behavior arbitration should combine them in such a way that both obstacle avoidance and goal tracking are partially fulfilled. Dynamic weights that are calculated from the geometric relations between the robot, goal and obstacle are assigned to the outputs of the two layers, and the overall reference orientation is calculated by the addition of them.
	� (11)

	The weight � and � in equation (11) are complementary, �, and are calculated by considering � the angle between the direction of velocity vector of the robot repelling force vector on the robot in Fig. 5. This classical method might be working well in the simulations where inertia of the robot is probably not considered, time delay between successive samples is small, and there is no noise. The problem of this method occurs as follows : At the instant shown, the robot is moving parallel to the obstacle, in which case the output of OA layer has no importance since its weight is zero. However, due to the position of the goal or landmark, the DTG or DTL layer produces a large output as orientation reference, and since its weight is, �, the resulting reference orientation for the robot will be large and in the direction of the goal. This will cause the robot to turn fast in the reference direction. If the robot has large inertia and the sampling time of sensor is also large, this situation will cause the robot to hit the obstacle, or at best will cause severe directional oscillations.
	The new turning angle � is calculated as the difference between the angle to obstacle and angle to goal point, as shown in Fig. 5 for goal point 1.
	� (12)

	This formulation shows that the weight of obstacle will be large since the turning angle is small according to classical method, and the robot will continue to turn around it until it comes to a position where the goal is directly in front of it, like goal point 2.
	Another problem, which is also inherent in potential field method, is that the robot can not reach the goal if it is located too close to an obstacle, due to large repelling forces in the vicinity of obstacle resulting in large reference orientation changes calculated by the OA layer. This can be relieved if the behavior arbitration layer takes into account obstacle and goal distances.
	If goal is close to an obstacle, since the robot is approaching the obstacle, it will be repelled and forced to go away even though the goal is in front of it. In such a case, if behavior arbitration layer sets the weight of OA layer to zero, the robot will be able to reach the goal. This approach only relieves the problem, since for example, if the goal were on the other side of the obstacle, the distance to the goal would not be smaller while the robot is turning around the obstacle, and it will enter an infinite loop turning around the obstacle forever and never reaching the goal.
	The main idea of the design of a behavior arbitration layer is used to the 3-10-2 neural networks. This system has �,  �(the average distance between obstacles and robot) and �(the distance between the goal or landmark position and robot) as the input, and the output is �(the weight parameter of �) in Fig. 6. First, this system can be learning as equation (12). Also, a behavior arbitration layer can be possible continuously through reinforcement learning.

	2.7 Low-level Motion Control Layer
	Now that the reference orientation of robot has been calculated, it is time to drive the robot according to this reference for safe navigation. The obstacle avoidance and drive toward goal or landmark parallel layers give only the reference orientation of the robot and does not tell anything related to speed of the robot. In the original form of potential field method, the velocity is taken to be proportional to the magnitude of the resultant force. If the attractive force is chosen to be proportional to the square of the distance from robot to goal or landmark point, the velocity becomes proportional to the distance to the goal or landmark. Accordingly, robot should drive fast when it is far away, and should naturally stop when it reaches the goal. There is of course an upper limit for the velocity for safe navigation. A different approach is implemented in this work, and it will be discussed later in this chapter.
	Having the reference orientation, �, and velocity, �, a motion controller can be implemented according to the local coordinate system of the robot to calculate the individual wheel velocities assuming the robot is as defined in section A.
	Similar to the � calculations, separate controls are implemented in �, � components. Proportional controller is used instead of sliding mode controller. First, errors are calculated as follows.
	� (13)

	Where � is the distance from robot to goal or landmark point, �, since the desired distance is zero; � is reference orientation generated by behavior arbitration layer, and � is zero. Fig. 6 illustrates the parameters.
	Controls are chosen as
	�,  � (14)

	Where � and � are right and left wheel velocity references to be used by the controller on the robot, � is the robot’s interwheel distance. Then the controls are calculated using a proportional controller.
	� (15)

	Where � and � are proportional control gains. Finally, wheel velocity references can be calculated.
	� (16)



	3. Simulations
	In this section, simulation results are shown to confirm the validity of the proposed method. The goal of the simulation is to successfully reach for each robot to the goal position. In Fig. 6, the first experiment is implemented in the environment, which is a circular obstacle between a robot and a goal. This experiment is shown the optimal path and the reduced oscillation when a robot pass a circular obstacle. In Fig. 7, the second experiment is implemented in the environment, which is a U-shaped obstacle between a robot and a goal. This experiment is shown that a robot overcomes trap situation. In Fig. 8, the third experiment is implemented in the environment, which is a combination of circular obstacles. This experiment is shown that a robot overcomes no passage between closely spaced obstacles. In Fig. 9, the forth experiment is implemented in the environment, in which another robot and combination of circular obstacles exist. This experiment is shown the performance in dynamic environment. The proposed algorithm for navigation is shown the good performance through these experiments.

	4. Conclusion
	In this work, a potential field based autonomous mobile robot navigation algorithm is implemented on a computer simulation system. Modifications for improvements, and better performance are suggested in the light of experimental results. The results are evaluated and the shortcomings of experimental setup and algorithms used are stated. The performance of the system is satisfactory proposing solutions to the problematic cases of especially potential field based robot navigation algorithms and implementations, such as reducing oscillations, ability to pass through closely spaced obstacles, and navigation among complex shaped obstacles. In our application of the potential model for mobile robots, however, we still encounter the problem of concavities in the potential field. In future work, we will study on potential field model more suitable for mobile robot navigation tasks and apply the proposed navigation algorithm to real robot system.
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