• Title/Summary/Keyword: Navier-Stokes solution

Search Result 241, Processing Time 0.02 seconds

Prediction of Turbulent Flows with Separation and Swirl Using the RNG K-$\varepsilon$ Turbulence Model (RNG k-$\varepsilon$ 난류모델을 이용한 유동박리 및 선회를 가지는 난류유동의 예측)

  • 김성구;오군섭;김용모;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.5
    • /
    • pp.119-129
    • /
    • 1996
  • This study is concerned with the critical evaluation of predicative capability of a k-$\varepsilon$ turbulence model using the Renormalization Group(RNG) theory. The present numerical model for solution of the Navier-Stokes System is based on the modified PISO algorithms. Computations have been performed with the RNG-based K-$\varepsilon$ model for the two-dimensional flow over a backward-facing step, a confined coaxial jet, and a swirling flow in a swirl combustor. Numerical results are compared with experimental data in terms of mean flow velocities, turbulent kinetic energy, and turbulent stresses. Numerical results clearly indicate that the RNG-based K-$\varepsilon$ turbulence model shows a significant improvement over a standard K-$\varepsilon$ model in predicting the turbulent flows with flow separation and swirl.

  • PDF

Effects of Nose Radius of Blunt Body on Aerodynamic Heating in Thermochemical Nonequilibrium Flow (무딘 물체의 노즈 반지름이 비평형 유동의 공력 가열에 미치는 영향)

  • Lee Chang Ho;Park Seung O
    • Journal of computational fluids engineering
    • /
    • v.8 no.4
    • /
    • pp.34-40
    • /
    • 2003
  • The effect of nose radius on aerodynamic heating is investigated by using the Navier-Stokes code extended to thermochemical nonequilibrium airflow, Spherical blunt bodies, whose nose radius varies from 0.O03048 m to 0.6096 m, flying at Mach 25 at an altitude of 53.34 km are considered. Comparison of heat flux at stagnation point with the solution of Viscous Shock Layer and Fay-Riddell are made. Results show that the flow for very small radius is in a nearly frozen state, and therefore the heat flux due to diffusion is smaller than that due to translational energy. As the radius becomes larger, the portion of heat flux by diffusion becomes greater than that of heat flux by translational temperature and approaches to a constant value.

IMMIGRATION FROM COMPRESSIBLE TO PRECONDITIONING CODE WITH VALIDATIONS (압축성 코드에서 예조건화 코드로의 이전 및 검증)

  • Han S.H.;Kim M.H.;Choi J.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.145-150
    • /
    • 2005
  • Generally, Compressible Navier-Stokes codes are used to solve high mach number flows. But, Most of high mach number flows embrace low mach number flows. This phenomenon results in low convergence rate and non-physical solution in CFD analysis. So Many researchers developed preconditioning technique to solve these problems. This Study presents how to modify previous compressible N-S computer code with little changes of structure into preconditioned compressible N-S code applying Roe's Approximate Riemann Solver. And this study show developed preconditioning code is very well operated at all mach number flows.

  • PDF

NUMERICAL SIMULATION OF UNSTEADY MISSILE STAGING SYSTEM (미사일 단분리 시스템의 비정상 유동장 해석)

  • Yoon Y. H.;Kwon K. B.;Hong S. K.
    • Journal of computational fluids engineering
    • /
    • v.10 no.4 s.31
    • /
    • pp.24-31
    • /
    • 2005
  • A dynamic simulation on the missile staging system is conducted with numerical techniques. Both Euler equations and Navier-Stokes equations are numerically solved respectively. The dynamic simulation of two moving bodies is fully integrated into the computational fluid dynamics solution procedure. The Chimera grid scheme is applied in this simulation for unsteady supersonic flow analysis with dynamic modeling. The objective of the study is to investigate the problem pertaining to possible unstability in missile staging. In addition, the computational comparison between in viscid and viscid flow solvers is also performed in this study.

NUMERICAL ANALYSIS ON THE HEAT TRANSFER AND FLOW IN THE SHELL AND TUBE HEAT EXCHANGER (Shell & Tube 열교환기 Shell 측 열전달 및 유동에 대한 수치해석)

  • Lee, Sang-Hyuk;Lee, Myung-Sung;Hur, Nahm-Keon
    • Journal of computational fluids engineering
    • /
    • v.12 no.3
    • /
    • pp.13-19
    • /
    • 2007
  • A numerical simulation on the heat transfer and flow field was carried out to improve the performance of the shell and tube heat exchanger. The steady incompressible 3-D Navier-Stokes solution is obtained with the actual operational condition and geometry of the heat exchanger. Based on this study, it is noted that the present geometry of the heat exchanger causes poor heat transfer since the air inside shell does not flow through the tube bundle, but around it. The enhancement of the heat transfer can be achieved by the variation of the design factor like the sealing strip located on the top/bottom and middle of the baffle, but it causes the increasement of the pressure drop. In this paper, the effects of the location and size of the sealing strips and flow rate through the heat exchanger on the heat transfer and pressure drop are studied.

WIND PRESSURE TRANSIENTS ON PLATFORM SCREEN DOOR OF ISLAND PLATFORMS IN A SUBWAY STATION CAUSED BY A PASSING TRAIN (섬식 승강장에서 열차 운행에 의한 지하철 승강장 스크린 도어 풍압 해석)

  • Lee, Myung-Sung;Won, Chan-Shik;Hur, Nahm-Keon
    • Journal of computational fluids engineering
    • /
    • v.12 no.3
    • /
    • pp.1-7
    • /
    • 2007
  • In the present study, the wind pressure transients on platform screen door in island platform caused by a passing train are investigated numerically. The transient compressible 3-D full Navier-Stokes solution is obtained with actual operational condition of subway train and the moving mesh technique adopted for the train movement. To achieve more accurate results, detailed shape of train is included in a computational domain and the entrance and exit tunnel of platform are also modeled. Numerical analyses are conducted on three operational conditions of different velocity variation.

NUMERICAL ANALYSIS OF SUPER-CAVITATING FLOW AROUND TWO-DIMENSIONAL AND AXISYMMETRIC BODIES (2차원 및 축대칭 운동체 주위의 초공동 현상에 대한 수치해석)

  • Park, Sun-Ho;Rhee, Shin-Hyung
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.14-21
    • /
    • 2011
  • Super-cavitating flows around under-water bodies are being studied for drag reduction and dramatic speed increase. In this paper, high speed super-cavitating flow around a two-dimensional symmetric wedge-shaped body were studied using an unsteady Reynolds-averaged Navier-Stokes equations solver based on a cell-centered finite volume method. To verify the computational method, flow over a hemispherical head-form body was simulated and validated against existing experimental data. Various computational conditions, such as different wedge angles and caviation numbers, were considered for the super-cavitating flow around the wedge-shaped body. Super-cavity begins to form in the low pressure region and propagates along the wedge body. The computed cavity lengths and velocities on the cavity boundary with varying cavitation number were validated by comparing with analytic solution.

Numerical calculations of aerodynamic performance for ATM train at crosswind conditions

  • Rezvani, Mohammad Ali;Mohebbi, Masoud
    • Wind and Structures
    • /
    • v.18 no.5
    • /
    • pp.529-548
    • /
    • 2014
  • This article presents the unsteady aerodynamic performance of crosswind stability obtained numerically for the ATM train. Results of numerical investigations of airflow past a train under different yawing conditions are summarized. Variations of occurrence flow angle from parallel to normal with respect to the direction of forward train motion resulted in the development of different flow patterns. The numerical simulation addresses the ability to resolve the flow field around the train subjected to relatively large yaw angles with three-dimensional Reynolds-averaged Navier-Stokes equations (RANS). ${\kappa}-{\varepsilon}$ turbulence model solved on a multi-block structured grid using a finite volume method. The massively separated flow for the higher yaw angles on the leeward side of the train justifies the use of RANS, where the results show good agreement with verification results. A method of solution is presented that can predict all aerodynamic coefficients and the wind characteristic curve at variety of angles at different speed.

Numerical Analysis of Detonation Wave Propagation in SCRam-Accelerator (초음속 연소 탄체 가속기 내의 폭굉파 진행에 관한 수치해석)

  • Choi, Jeong-Yeol;Jeung, In-Seuck;Lee, Soo-Gab
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.1
    • /
    • pp.83-91
    • /
    • 1996
  • A numerical study is carried out to examine the ignition and propagation process of detonation wave in SCRam-accelerator operating in superdetonative mode. The time accurate solution of Reynolds averaged Navier-Stokes equations for chemically reacting flow is obtained by using the fully implicit numerical method and the higher order upwind scheme. As a result, it is clarified that the ignition process has its origin to the hot temperature region caused by shock-boundary layer interaction at the shoulder of projectile. After the ignition, the oblique detonation wave is generated and propagates toward the inlet while constructing complex shock-shock interaction and shock-boundary layer interaction. Finally, a standing oblique detonation wave is formed at the conical ramp.

  • PDF

A Design of Engine Exhaust Ejector for Smart UAV (스마트무인기의 엔진 배기이젝터 설계에 관한 연구)

  • Lee, Chang-Ho;Kim, Jai-Moo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.403-406
    • /
    • 2006
  • An ejector is designed for the purpose of engine bay cooling. The primary flow of the ejector is the exhaust gas of the PW206C turboshaft engine. The mass flow of secondary flow is calculated by using the approximate analytic equation. For the purpose of verification of approximate analytic method, comparison is made with the results of Navier-Stokes turbulent flow solution. According to the results of CFD, the mixing of two flows is incomplete due to the short length of mixing duct.

  • PDF