• 제목/요약/키워드: Navier-Stokes Analysis

검색결과 915건 처리시간 0.026초

A comparative study of numerical methods for fluid structure interaction analysis in long-span bridge design

  • Morgenthal, Guido;McRobie, Allan
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.101-114
    • /
    • 2002
  • Both a Finite Volume and a Discrete Vortex technique to solve the unsteady Navier-Stokes equations have been employed to study the air flow around long-span bridge decks. The implementation and calibration of both methods is described alongside a quasi-3D extension added to the DVM solver. Applications to the wind engineering of bridge decks include flow simulations at different angles of attack, calculation of aerodynamic derivatives and fluid-structure interaction analyses. These are being presented and their specific features described. If a numerical method shall be employed in a practical design environment, it is judged not only by its accuracy but also by factors like versatility, computational cost and ease of use. Conclusions are drawn from the analyses to address the question of whether computer simulations can be practical design tools for the wind engineering of bridge decks.

초음속 연소 탄체 가속기 내의 폭굉파 진행에 관한 수치해석 (Numerical Analysis of Detonation Wave Propagation in SCRam-Accelerator)

  • 최정열;정인석;이수갑
    • 한국연소학회지
    • /
    • 제1권1호
    • /
    • pp.83-91
    • /
    • 1996
  • A numerical study is carried out to examine the ignition and propagation process of detonation wave in SCRam-accelerator operating in superdetonative mode. The time accurate solution of Reynolds averaged Navier-Stokes equations for chemically reacting flow is obtained by using the fully implicit numerical method and the higher order upwind scheme. As a result, it is clarified that the ignition process has its origin to the hot temperature region caused by shock-boundary layer interaction at the shoulder of projectile. After the ignition, the oblique detonation wave is generated and propagates toward the inlet while constructing complex shock-shock interaction and shock-boundary layer interaction. Finally, a standing oblique detonation wave is formed at the conical ramp.

  • PDF

Sensitivity analysis of transonic flow past a NASA airfoil/wing with spoiler deployments

  • AKuzmin, lexander
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권3호
    • /
    • pp.232-240
    • /
    • 2014
  • Transonic flow past a NASA SC(2)-0710 airfoil with deployments of a spoiler up to $6^{\circ}$ was studied numerically. We consider angles of attack from $-0.6^{\circ}$ to $0.6^{\circ}$ and free-stream Mach numbers from 0.81 to 0.86. Solutions of the unsteady Reynolds-averaged Navier-Stokes equations were obtained with a finite-volume solver using several turbulence models. Both stationary and time-dependent deployments of the spoiler were examined. The study revealed the existence of narrow bands of the Mach number, angle of attack, and spoiler deflection angle, in which the flow was extremely sensitive to small perturbations. Simulations of 3D flow past a swept wing confirmed the flow sensitivity to small perturbations of boundary conditions.

플랩현상 변화에 따른 파력발전용 웰즈터빈의 형상설계에 관한 연구(1) (A Study on the Design of Wells Turbine for Wave Power Conversion by Various Flap Shape (1))

  • 김동균;김정환;최윤환;배석태;이연원;이영호
    • 한국CDE학회논문집
    • /
    • 제9권3호
    • /
    • pp.253-259
    • /
    • 2004
  • A numerical investigation was performed to determine the effect of airfoil on the optimum flap height using NACA0015 Wells turbine. The five double flaps which have 0.5% difference were selected. A Navier-Stokes code, CFX-TASCflow, was used to calculate the flow field of the Wells turbine. The basic feature of the Wells turbine is that even though the cyclic airflow produces oscillating axial forces on the airfoil blades, the tangential force on the rotor is always in the same direction. Geometry used to define the three dimension numerical grid is based upon that of an experimental test rig. This paper tries In optimized disign the double flap of Wells turbine with the numerical analysis.

기판 위에 분포된 발열블록 주위의 3차원 혼합대류 열전달 해석 (Analysis of Three-Dimensional Mixed Convection Flow About Uniformly Distributed Heat-Generating Blocks on a Conductive Wall)

  • 윤병택;최동형
    • 대한기계학회논문집B
    • /
    • 제23권1호
    • /
    • pp.1-11
    • /
    • 1999
  • The three-dimensional laminar mixed convection flow between the conductive printed circuit boards. on which the heat generating rectangular blocks are uniformly distributed, has been examined in the present study. The flow and heat-transfer characteristics are assumed to be pseudo periodic in the streamwise direction and symmetric in the cross-stream direction. Using an algorithm of SIMPLER, the continuity equation. the Navier-Stokes equations and the energy equation are solved numerically in the three-dimensional domain Inside the channel. The convective derivative terms are discretized by the QUICK scheme to accurately capture the flow field. The flow and the heat transfer characteristics are thoroughly examined for various Re and Gr.

신경회로망기법을 사용한 엇갈린 딤플 유로의 최적설계 (Design Optimization of a Staggered Dimpled Channel Using Neural Network Techniques)

  • 신동윤;김광용
    • 한국유체기계학회 논문집
    • /
    • 제10권3호
    • /
    • pp.39-46
    • /
    • 2007
  • This study presents a numerical procedure to optimize the shape of staggered dimple surface to enhance turbulent heat transfer in a rectangular channel. The RBNN method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer with shear stress transport (SST) turbulence model. The dimple depth-to-dimple print diameter (d/D), channel height-to-dimple print diameter ratio (H/D), and dimple print diameter-to-pitch ratio (D/S) are chosen as design variables. The objective function is defined as a linear combination of heat transfer related term and friction loss related term with a weighting factor. Latin Hypercube Sampling (LHS) is used to determine the training points as a mean of the design of experiment. The optimum shape shows remarkable performance in comparison with a reference shape.

터보블로어 설계인자의 성능특성 연구 (Performance Analysis on the Design Variables of a Turbo Blower)

  • 장춘만;양상호
    • 한국유체기계학회 논문집
    • /
    • 제14권2호
    • /
    • pp.47-51
    • /
    • 2011
  • This paper describes the shape optimization of a blower impeller used for a refuse collection system. Two design variables, which are used to define the blade angles of an impeller, are introduced to increase the blower performance. A blower efficiency is selected as an object function, and the shape optimization of the blade angles is performed by a response surface method (RSM). Three-dimensional Navier-Stokes equations are introduced to analyze the internal flow of the blower and to find the value of object function for the training data. Relatively good agreement between experimental measurements and numerical simulation is obtained in the present study. Throughout the shape optimization, blower efficiency for the optimal blade angles is successfully increased up to 3.6% compared with that of reference at the design flow rate. Detailed flow field inside the turbo blower is also analyzed and discussed.

관류 익형송풍기의 유동장 해석 (Numerical analysis of flow in airfoil type tubular centrifugal fan)

  • 문정주;서성진;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.23-29
    • /
    • 2001
  • Three-dimensional flow through a tubular centrifugal fan with airfoil type blades are analyzed using CFX-TASCflow. Standard k - $\epsilon$ model and k - $\omega$ model are used as turbulence closures. The numerical schemes for convetion terms, i.e., Upwind Differencing Scheme(UDS), Mass Weighted Skewed Upstream Differencing Scheme(MWS), Linear Profile Skewed Upstream Differencing Scheme(LPS), and Modified Linear Profile Skewed Upstream Differencing Scheme(MLPS) are also tested. And, the performance of these schemes coupled with two turbulence models are evaluated. Computational static pressure distributions are compared with experimental data obtained in this work.

  • PDF

단단 천음속 축류압축기 동익의 Stacking Line 설계 최적화 (Optimal Design for Stacking Line of Rotor Blade in a Single-Stage Transonic Axial Compressor)

  • 장춘만;;김광용
    • 한국유체기계학회 논문집
    • /
    • 제9권3호
    • /
    • pp.7-13
    • /
    • 2006
  • Shape optimization of a rotor blade in a single-stage transonic axial compressor has been performed using a response surface method and three-dimensional Navier-Stokes analysis. Two shape variables of the rotor blade, which are used to define a blade skew, are introduced to increase an adiabatic efficiency. Throughout the shape optimization of a rotor blade, the adiabatic efficiency is increased to about 2.2 percent compared to that of the reference shape of the stator. The increase in efficiency for the optimal shape of the rotor is due to the pressure enhancement, which is mainly caused by moving the separation position on the suction surface of rotor blade to the downstream direction.

파력 발전용 웰즈터빈의 유동특성에 관한 수치적 연구 (Numerical Analysis of Flow Characteristics in the Wells Turbine for Wave Power Conversion)

  • 이형구;김정환;이연원
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2000년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.325-333
    • /
    • 2000
  • The aerodynamics of the Wells turbine has been studied using a 3-dimensional, unstructured mesh flow solver for the Reynolds-averaged Navier-Stokes equations. The basic feature of the Wells turbine is that even though the cyclic airflow produces oscillating axial forces on the airfoil blades, the tangential force on the rotor is always in the same direction. Geometry used to define the 3-dimensional numerical grid is based upon that of an experimental test rig. The 3-dimensional Wells turbine model, consisting of approximate 220,000 cells is tested at four axial flow rates. In the calculations the angle of attack has been varied between $10^{\circ}$ and $30^{\circ}$ of blades. Representative results from each case are presented graphically and analyzed. It is concluded that this method holds much promise for future development of Wells turbines.

  • PDF