플랩형상 변화에 따른 파력발전용 웰즈터빈의 형상설계에 관한 연구(1)

김동균*, 김정환**, 최윤환***, 배석태*, 이연원***, 이영호****

A Study on the Design of Wells Turbine for Wave Power Conversion by Various Flap Shape (1)

Kim, D.K.*, Kim, J.H.**, Choi, Y.H.***, Bae, S.T.*, Lee, Y.W.*** and Lee, Y.H.****

ABSTRACT

A numerical investigation was performed to determine the effect of airfoil on the optimum flap height using NACA0015 Welts turbine. The five double flaps which have 0.5% difference were selected. A Navier-Stokes code, CFX-TASCflow, was used to calculate the flow field of the Wells turbine. The basic feature of the Wells turbine is that even though the cyclic airflow produces oscillating axial forces on the airfoil blades, the tangential force on the rotor is always in the same direction. Geometry used to define the three dimension numerical grid is based upon that of an experimental test rig. This paper tries to optimized disign the double flap of Wells turbine with the numerical analysis.

Key words : Wells turbine, Double flap, NACA

1.서 론

에너지 자원의 대부분을 수입에 의존하고 있는 우 리나라는 환용 가능한 모든 에너지원을 적극적으로 개발하여 에너지 자원의 자립도를 향상시키는 것이 매우 중요하다. 삼면이 바다로 둘러싸인 지리적인 조 건을 감안할 때 해양에너지자원 개발에 관심을 가질 필요가 있다. 특히 파력발전은 바다라면 어느 곳에나 산재되어 있는 무공해, 무한정의 파도를 이용하므로 환경에 미치는 영향이 거의 없고, 장래 경제성에 있어 서 뛰어난 대체에너지로서의 잠재력을 가진 파력에너 지를 이용한 기술 연구는 파력자원이 풍부한 일본, 영 국, 노르웨이 등에서 활발하게 추진되고 있다. 파력발 전은 심한 출력변동과 대규모 발전 플랜드를 해상에 계류시키는데 기술적인 어려움은 있으나 2010년까지 는 상용발전이 가능한 것으로 전망되고 있다.

일본은 Kaimci(海明)에 240 kW급의 해안 고정식 과력발전 장치를 설치하여 시험가동하고 있으며, 해 양과학기술센터의 주관으로 54 kW급의 부유식과력

*동명대학 첨단지식공학부 **한국조선기자재연구원 ***부경대학교 기계공학부 ****한국해양대학교 기계·정보공학부 - 논문투고일: 2003. 11. 05 - 십사완료일: 2004. 04. 25

발전소 건설을 진행하고 있다. 영국은 Oueen's University of Belfast에 75 kW규 파력발전장치를 설 치가동 중이고, 노르웨이, 덴마크에서도 이와 같은 발 전소 건설을 추진 중에 있다면 따라서 우리나라와 같 이 많은 해안선을 가지고 있는 지형특성을 고려해 볼 때 파력에너지는 매력적인 자연에너지인 것은 분명하 다. Fig. 1에서 보는 바와 같이 웰즈터빈은 OWC (oscillating water column)의 원리를 이용하는 파력변 환장치 중 가장 널리 사용되어지고 있는 공기터빈아 다¹²⁻⁴, 날개는 터빈의 축방향에 90°로 설치하면, 터빈 은 회전면에 대칭이고 OWC에서 근거로 한 것처럼 양방향성 공기유동에 의해서 터빈은 한 방향으로 회 전한다. 웰즈터빈에 대한 연구는 수치계산과 실험은 몇몇 연구자들에 의해서 이루어지기는 했으나, 웰즈 터빈 자체의 특성만을 연구할 뿐 유체해석에 관한 최 적설계에 관한 연구는 잘 이루어지지 않고 있다. 이에 본 연구에서는 Fig. 2에서 처럼 기존의 웰즈터빈 끝단 부에 더블플랩(double flap)을 고안하여 장착한 다음 웰즈터빈의 최적화된 형상을 유채해석기법중의 하나 인 전산유체역학(CFD)을 이용하여 구하였다. 최적화 변수로는 더블블랩 크기는 0.0%에서 2.0%까지 변화 를 시켜 최직의 더블플랩 형상을 구하고 영각과 더블 플랩 변화에 따른 공력해석을 규명하여 파력발전용 웰즈터빈의 최적형상설계에 그 목적을 두고 있다.

Fig. 2. Double Flap.

본 연구에서는 웰즈터빈 실험장치에서 사용한 캠버 가 없는 날개 주위의 3차원 웰즈터빈 형상을 모델링 하고 계산을 수행하였다. 형상은 CATIA를 사용하여 모델링 하였으며, 모델링한 형상데이터는 중립과일인 STL파일형식으로 변환한 후, 해석을 위한 격자생성과 해석에 필요한 모델데이터를 획득하였다. 계산격자는 본 연구와 같은 유동해석에 적합한 3차원 정렬 다중 블록 격자계(Structured multi-block grid system)를 격자계를 생성하였다. 또한, 해석을 위해서 사용한 CFD코드는 터보기계를 전문적으로 해석할 수 있는 CFX-TASCflow¹⁵¹를 사용하여 유체역학측면에서 웰즈 터빈의 공력성능을 측정하여 최적화된 형상설계에 관 하여 연구를 수행 하였다.

2. 형상모델링 및 계산격자

2.1 웰즈터빈 3차원 형상 모델링

수치해석 대상으로 사용된 웰즈터빈은 영국의 웰즈 에 의해 설계되었고, 계산 모델은 Fig. 3에서 보는 바 와 같이 1994년 Warfield에서 실험한 웰즈터빈 데이 터를 이용하였고, NACA0015의 익형으로 이루어져 있는 터빈로터는 환형 실린더 덕트에 설치되어져 있 으며, 공기는 공기챔버를 통하여 종 모양의 홉입구를 통하여 홉입되고, 터빈을 지나 외부로 빠져나가도록 되어 있다. 그리고 3-D 격자생성에 있어서 터빈의 형 상과 유동형태의 회전적 순환 성질 때문에 Fig. 4에서 와 같이 한 개의 날개 주위부분만을 모델링하였고, 주 기적인(Periodic)경계조건을 사용함으로써 8개에 대한 계산조건을 단순화하였다.

2.2 계산격자의 생성

수지해석 결과의 신뢰성에 가장 큰 영향을 미치는 요소 중의 하나가 계산 격자의 품질문제라고 할 수 있 다. 본 연구에서는 3자원 정렬 다중 블록 격자계를 이

Fig. 3. Eight bladed Wells turbine rotor.

Fig. 4. Computational domain.

Fig. 5. Three Dimensional grid of a Wells turbine.

용하여 격자를 생성하였다. 계산 격자를 생성함에 있 어, 저 레이놀즈 수 난류 모델을 적용함에 따라 선뢰 성 있는 해석결과를 확보하기 위해선 벽 근처 격자의 밀집도에 상당한 신경을 써야만 한다. 따라서 계산에 사용된 격자계에서 로티 블레이드 표면에 집중된 첫 번째 격자 점은 y*≤2로 하였다. 격자를 생성하는 과 정에서 블레이드 주위의 격자 품질도를 높게 유지하 기 위하여, 전체 도메인을 총 24 블록으로 구역으로 하였으며, 격자는 H-type 격자계로 구성하였다.

계산 PC의 계산 용량 문제로 반드시 생성 가능한

격자점 수의 한계가 발생한다. 블레이드 표면에 보다 조밀한 격자를 생성하기 위하여 전체 도메인을 기준 으로 격자접을 제어 하다보면 상당히 많은 격자 점을 필요로 하나, 본 연구에서는 블레이드를 감싸는 Ogrid주변 격자점의 정보를 바탕으로, 격자 리파인먼트 (mesh-refinement) 과정을 거쳐, 블레이드 주변 블록에 반 초기에 생성된 격자보다 3배 더 조밀한 격자를 생 성하였으며, 격자점은 Solver에서 제공하는 노드매칭 (node matching) 기능인 arbitrary(GGI)를 이용하여 매칭시켰다. 전체 격자수는 380,000개이다.

Fig. 5에 본 연구에 사용된 계산격자를 나타내었다.

3. 수치해석기법 및 계산조건

CFX-TASCflow는 3차원 레이놀즈 평균 나비어 스 목스(Raynolds Averaged Navier-Stokes) 방정식을 적 용하며, 지배방정식은 유한체적법에(Finite Volume Method) 의하여 이산화 된다¹⁵. 본 수치계산은 3차원 비압축성 정상상태 유동조건이라고 가정하여 수행되 었다. 상용 CFD 코드에서 기본적으로 제공되는 표준 k - c 모델은, 저 레이놀즈 수를 갖는 유동의 표면바리

(a) Axial flow rate = $0.674 \ m^3/s$

(b) Axial flow rate = 1.351 m³/sFig. 6. Streamline flowing over low pressure side of blades.

현상을 정확하게 애측할 수 없는 단점을 가지고 있다 고 보고되고 있다. 따라서, 본 연구에서는 로터 블레 이드 표면에서 발생하는 3차원적 유동박리 현상에 대 한 영향을 반영하여, Standard 표준 $k \sim \varepsilon$ 모텔에 비 하여 비교적 정확한 예측이 가능하다고 알려져 있는 RNG $k - \varepsilon$ 모델을 적용하였다. 대류항의 이산화 기법 으로는 2차정도의 정확도를 가지는 MLPS(Modified Linear Profile Skew)를 적용하였다⁶.

4. 결과 및 고찰

Fig. 6은 날개 수 z=8, 솔리디티 s=0.79, 탑 클리 어런스 0%일 때 날개 흡입면에서의 유선분포를 나타 내고 있는데 입구측에서 들어오는 유량이 많을수록 터빈로터 볼레이드에서의 영각(angle of attack) 역시 높아지는 영향과 슈라우드 벽면과의 마찰에 의해서 볼레이드 표면에서 와류가 발생하는 것을 볼 수 있 으며, 박리점은 유량계수 0.674 m³/s에서 날개 팀 후 연부근에서 발생하기 시작하여 유량계수가 증가할수 록 전연부근으로 이동을 하다가 유량계수 1.351 m³/s 에서는 날개 표면에서 강한 와류가 관찰되고 있다.

Fig. 7은 로터 블레이드 흡임면에서의 정압분포를 나타내고 있다. 블레이드의 가장 낮은 압력은 허브보 다는 팀에서의 원주속도가 빠르기 때문에 날개 전연 팁 부근에서 나타나고 있으며, 유량계수가 증가할수 록 날개 전연 팀에서 허브부근으로 이동하고 있는 것 을 관찰할 수 있다.

Fig. 8은 터빈로터 블레이드 mid-span에서의 압력분 포를 나타내고 있다.

Fig. 9~Fig. 11은 유량계수 φ, 토크계수 C₇, 압력 강하계수 ψ, 효율 η 등의 무차원 수에 의해 나타낸 것이며, 무차원 수는 아래와 같이 정의할 수 있다.

$$\phi = \frac{V_a}{U} = \tan\alpha \tag{1}$$

$$C_{T} = \frac{T}{\frac{1}{2}\rho(U^{2} + V_{a}^{2})AR_{t}}$$
(2)

$$\Psi = \frac{\nabla P}{\frac{1}{2}\rho(U^2 + V_a^2)}$$
(3)

$$\eta = \frac{C_T}{\phi \psi} \tag{4}$$

Fig. 9는 팁 클리어런스 1%일 때의 실험데이터와 본 연구에서의 수치계산에 의한 무차원 압력계수 값 들과 비교한 것이다^[1] 각각의 유량에 대해서 수치계

(b) Axial flow rate = $1.351 \text{ m}^3/\text{s}$

(b) Axial flow rate = $0.917 m^3/s$

(b) Axial flow rate = 1.351 m^3/s

Fig. 8. Pressure contours on planes at mid-span (N/m²).

Fig. 9. Comparison of experimental and numerical pressure drops across the turbine.

Fig. 10. Torque coefficient against double flap.

산에 의한 결과 값들은 실험과 비교할 때 5% 이내의 정확도를 보여주고 있다. 이 결과로 미루어 짐작할 때

본 연구에서 사용한 상용코드가 상당히 정확합을 알 수 있으며 이 것을 토대로 하여 더블플랩에 대한 계산 을 수행하였다.

Fig. 10과 Fig. 11은 각각의 더블플랩에 대해서 토 크계수와 효율을 나타내고 있다. 더블플랩을 장착한 경우가 장착하지 않은 경우보다 토크게수는 월등히 높았으며, 더블플랩 0.5%에서 토크계수는 가장 높게 나타났다. 그리고 효율 역시 더블플랩이 있는 경우에 서 효율이 높게 나타났으며, 효율적인 측면에서는 더 블플랩 1.0%에서 효율이 최대치를 나타내고 있었다. 이것으로 보아 더블플랩을 장착하지 않을 때보다는 장착했을 때 웰즈터빈의 성능은 월등히 좋았으며 최 직의 더블플랩은 약 1.0%이내에서 장착하는 것이 적 절하다는 것을 알 수 있었다.

한국CAD/CAM학회 논문집 제9권 제3호 2004년 9월

6.결 론

본 연구에서는 유량계수와 더블플랩의 영향에 대한 파력발전용 웰즈터빈의 최직실계에 대하여 유동해석 측면에서 전산유제해석(CFD)기법을 통해서 유동특성 과 터빈의 효율적인 측면을 고려한 결과, 가장 적절한 더블플랩의 크기는 약 1.0%이내가 가장 타당하다는 결론을 얻었으며 향후 보다 많은 경우에 대해 본 연구 에서 구한 데이터를 이용하여 구조해석과 가시화실험 (PIV)등을 통해서 웰즈터빈 로터 블레이드에 사용할 수 있는 최적형상의 익형의 종류와 더블플랩과의 관 계에 대한 연구를 수행할 예정이다.

감사의 글

본 연구는 2003년 부경대학교 BK21사업의 지원을 받아 수행하였습니다.

참고문헌

- Ryu, C. L., "Ocean energy engineering," New technique, pp. 75-123.
- 김정환, "CFD에 의한 파력발전용 왤즈티빈의 3차 원 유동특성에 관한 연구," 부경대학교.
- Kimoue, Y., Takao, M., Setoguchi, T. and Kaneko, K., "The bi-directional impulse turbine for wave energy conversion," 3nd ASME/JSME Joint Fluids Engineering Conference, pp. 1-7.
- Facao, A. F. O., Whittaker, T. J. T. and Lewis, A. W., JOULEII Preliminary Action : European Pilot Plant Study, Proc. 1993 European Wave Energy Symp., pp. 247-257, 1993.
- 5. CFX-TASCflow Users Manuals, CFX KOREA.
- 6. Patankar, S. V., "Numerical heat transfer and fluid flow," Hemisphere, Washington, D.C. 1980.
- Waterson, J. K. and Raghunathan, S., "Investigation of wells turbine performance using 3-D CFD," IEEE, 1996.

김 동 균

1995년 동아대학교 자원공학과 학사 1997년 동아대학교 기계공학과 식사 2001년 동아대학교 기계공학과 박사 2002년~현재 동명대학 컴퓨터응용기계과 전임강사 관심분야: CAD/CAM/CAE 데이터공유, CAD/CAM e-Training

김 정 환

1998년 부경대학교 기계공학과 학사 2000년 부경대학교 기계공학과 석사 2003년 한국해양대학교 기계공학과 박사 2004년~현재 한국조선기자재연구원 선임 연구원 관심분야: 풍력발전, 파력발전, 유체기계 (조선기자재), CFD, PIV

최 윤 환

1996년 동아대학교 기계공학과 학사 1998년 동아대학교 기계공학과 석사 2000년 동아대학교 기계공학과 박사 2003년~현제 부경대학교 기계공학부 계 약교수

관심분야: 유체기계, 회전유동, 혼돈유체 역 학

| 석 태

1988년 동아대학교 기계공학과 학사 1990년 동아대학교 기계공학과 석사 1998년 동아대학교 기계공학과 박사 1995년~현재 동명대학 메카트로닉스과 부교수

관심분야: 공유압시스템, CAD/CAM

이 연 원

1981년 경북대학교 기계공학과 학사 1983년 경북대학교 기계공학과 식사 1993년 東京大學 기계공학과 박사 1993년~현재 부경대학교 기계공학부 교수

관심분야: 다상유동, 난류모델링

이 영 호

1980년 한국해양대학교 기관공학과 학사 1982년 한국해양대학교 기관공학과 석사 1989년 東京大學 기계공학과 박사 1999년-현재 한국해양대학교 기계·정보 공학무 교수

관심문야: CFD, 지능형유체기계설계, 해 양환경 및 에너지 유체공학