• Title/Summary/Keyword: Naval ship survivability

Search Result 56, Processing Time 0.021 seconds

Analytic Verification of Optimal Degaussing Technique using a Scaled Model Ship (축소 모델 함정을 이용한 소자 최적화 기법의 해석적 검증)

  • Cho, Dong-Jin
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.2
    • /
    • pp.63-69
    • /
    • 2017
  • Naval ships are particularly required to maintain acoustic and magnetic silence due to their operational characteristics. Among them, underwater magnetic field signals derived by ships are likely to be detected by threats such as surveillance systems and mine systems at close distance. In order to increase the survivability of the vessels, various techniques for reducing the magnetic field signal are being studied and it is necessary to consider not only the magnitude of the magnetic field signal but also the gradient of it. In this paper, we use the commercial electromagnetic finite element analysis tool to predict the induced magnetic field signal of ship's scaled model, and arrange the degaussing coil. And the optimum degaussing current of the coil was derived by applying the particle swarm optimization algorithm considering the gradient constraint. The validity of the optimal degaussing technique is verified analytically by comparing the magnetic field signals after the degaussing with or without gradient constraint.

A Study on the Reliability Improvement of Compartment Leak Test in Surface Vessels (함정 격실기밀 평가 방안에 대한 신뢰성 향상 연구)

  • Choi, Sang-Min;Park, Dong-Kyu;Beak, Yong-Kawn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.546-551
    • /
    • 2020
  • Generally, surface vessels have many compartments for operation and living quarters, and each compartment is an important space for the ship's survivability. During ship construction, a compartment leak test is necessary and is carried out on each vessel. However, the current test method is in doubt when looking at the actual test results. The reason is that only one pressure gauge is used for the measurement to check the air, so an uncomprehended phenomenon is detected during group compartment leak tests. From this point of view, an improved test device and method are needed. In this study, a multi-channel data acquisition device with multiple pressure sensors is proposed to detect each compartment's pressure variation or pressure drop. This test is a more confidential compartment leak test than the current method, and the test device can show real-time pressure detection values of each of the pressure sensors, which are installed in each compartment, including unmanned space.

Effective Response Time Verify of Active Decoy Against Anti-Ship Missile Using DEVS Simulation (DEVS 시뮬레이션을 사용한 능동기만기의 대함미사일에 대한 효과적인 대응시간 검증)

  • Choi, Soon-Ho;Cho, Tae-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.495-501
    • /
    • 2015
  • Abroad warships are confronted with various menaces. The most critical threat of the warship is an Anti-Ship Missile (ASM). The ASM is able to be launched at a variety of environments and platforms. The ASM can evades conventional naval radar systems and electronic countermeasure techniques for providing a fatal damage to the warship. To cope with the ASM, an active decoy is an effective method to minimize the direct damage to the warship. The active decoy increases survivability of the warship because the ASM can lure pursuit of the active decoy instead of the warship. In this paper, our proposed method verifies an available response time of the active decoy to deal with the ASM using the active decoy of the warship in marine environments. We defined models of the warship, the ASM, and the active decoy, and executed simulation by combining the models. By the simulation result, the proposed method demonstrated the superiority of the mobile active decoy of the response time decoy among various active decoys, and estimated a protection area to prevent the ASM according the response time of the mobile active decoy against the ASM.

Development of Pressure Correction System for Surface Vessel to Ensure Reliability of Compartment Test Result (수상함 격실기밀시험 결과의 신뢰성 확보를 위한 압력 보정 시스템 개발)

  • Min, Il-Hong;Kim, Jun-Woo;Son, Gi-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.409-414
    • /
    • 2021
  • Tightness performance that blocks compartments is important for surface ships to achieve superior mission performance and survivability in combat environments. To meet the above requirements, airtightness of the structural elements and the appropriate strength to specific areas are checked during a test run after ship construction. In particular, air tests of compartments adjacent to the water surface are performed. In an air test, air is injected into the compartment up to the test pressure of the test memo. The pressure drop value is checked after 10 minutes to determine if the requirements of the corresponding area are satisfied. In summer, however, when the influence of the outside temperature is large, a phenomenon in which the internal pressure increases during the air test was identified. This phenomenon reduces the reliability of the test result. Therefore, a system was designed to compensate for temperature changes in the compartments through this study. The developed system calculates the amount of pressure change caused by a temperature change in the compartment and outputs a correction value. The pressure change was calculated using the ideal gas equation, reflecting the maintenance, increase, and decrease in temperature during the test process. A comparison of the calculated pressure correction value with the database of NIST REFPROP revealed a difference of 0.126% to a maximum of 0.253%.

Optimal depth for dipping sonar system using optimization algorithm (최적화 알고리즘을 적용한 디핑소나 최적심도 산출)

  • An, Sangkyum
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.541-548
    • /
    • 2020
  • To overcome the disadvantage of hull mounted sonar, many countries operate dipping sonar system for helicopter. Although limited in performance, this system has the advantage of ensuring the survivability of the surface ship and improving the detection performance by adjusting the depth according to the ocean environment. In this paper, a method to calculate the optimal depth of the dipping sonar for helicopters is proposed by applying an optimization algorithm. In addition, in order to evaluate the performance of the sonar, the Sonar Performance Function (SPF) is defined to consider the ocean environment, the depth of the target and the depth of the dipping sonar. In order to reduce the calculation time, the optimal depth is calculated by applying Simulated Annealing (SA), one of the optimization algorithms. For the verification of accuracy, the optimal depth calculated by applying the optimization technique is compared with the calculation of the SPF. This paper also provides the results of calculation of optimal depth for ocean environment in the East sea.

Anti Air Warfare analysis & Design of the Patrol Killer Experiment Combat System by the Model-Based-Simulation (모델 기반의 시뮬레이션 기법을 이용한 차기 고속정(Patrol Killer Experiment)용 전투체계 대공전 기능의 분석 및 설계)

  • Hwang, Kun-Chul
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.4
    • /
    • pp.23-31
    • /
    • 2007
  • Anti-Air Warfare(AAW) functionality of the naval combat system is the key functionality to ensure the ship's survivability. We have applied a novel method using model-based-simulation to analyze and design AAW functionality of the Patrol Killer Experimemnt Combat System. In this approach, an AAW functional model is described with the FSM(Finite State Machine) and directly executed for the AAW simulation. After prototyping using model based simulation, Hardware In Loop Simulation(HILS) is conducted as the AAW functionality is interfaced with the other ones of the combat system for completing the integration of the system components. This incremental and iterative development approach based on the model based simulation can minimize the development risks and costs caused by the system complexity for military system, bringing out the merit of the rapid prototyping.

  • PDF