• Title/Summary/Keyword: Naval ship survivability

Search Result 57, Processing Time 0.025 seconds

Study on estimation of propeller cavitation using computer vision (컴퓨터 비전을 이용한 프로펠러 캐비테이션 평가 연구)

  • Taegoo, Lee;Ki-Seong, Kim;Ji-Woo, Hong;Byoung-Kwon, Ahn;Kyung-Jun, Lee
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.128-135
    • /
    • 2022
  • Cavitation occurs inevitably in marine propellers rotating at high speed in the water, which is a major cause of underwater radiated noise. Cavitation-induced noise from propellers rotating at a specific frequency not only reduces the sonar detection capability, but also exposes the ship's location, and it causes very fatal consequences for the survivability of the navy vessels. Therefore cavity inception speed (CIS) is one of the important factors determining the special performance of the ship. In this study, we present a method using computer vision that can detect and quantitatively estimate tip vortex cavitation on a propeller rotating at high speed. Based on the model test results performed in a large cavitation tunnel, the effectiveness of this method was verified.

A Study on the Path Search for the Rapid Suppression of Naval Ships Casualties (함정 재해의 신속 진압을 위한 경로 탐색에 관한 연구)

  • Park, Ju-hun;Ruy, Won-Sun;Chung, Jung-Hoon;Kim, Sook-Kyoung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.4
    • /
    • pp.221-229
    • /
    • 2020
  • Naval ships could be seriously damaged by enemy attacks in battle. Moreover, this damage could be spread and deteriorated into a secondary accident. Secondary accidents that have adverse effects on naval ship's survivability, such as fire, flood, smoke extension, and patient occurrence, are defined as casualties. These casualties sharply degrade the survivability of naval ships. Furthermore, naval ships could be burned-out and sunk by casualties in isolated sea. Therefore, damage control and rapid suppression of the casualties in the naval ships is essential. This study was conducted in the establishment of suppression paths according to the characteristics of each casualty so that the developed system can support the rapid suppression in an emergency and even the training situation on a regular state. To establish the suppression paths, the two-dimensional numerical map is designed by converting the three-dimensional features of the naval ships, and the well known algorithms are compared to present the appropriate one for path finding problem on the naval ships. Finally, we devised a specific routing algorithm that fits the characteristics of each casualty in accordance with the Korean Navy's doctrines and handbooks of casualty suppression.

An Experimental Study on the Dispersion Characteristics of Seawater Injection Nozzle for Hull Cooling (선체냉각을 위한 해수분사노즐의 산포특성에 관한 실험 연구)

  • Yoon, Seoktae;Jung, Hoseok;Cho, Yongjin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.767-773
    • /
    • 2017
  • Infrared stealth is an important technology for naval ships. This technology helps improve the anti-detection performance and survivability of naval ships. In general, the infrared signature of naval ships are categorized into internal and external heat source. External signature are generated by ship surface heating by solar flux as well as the complicated heat transfer process with the surrounding weather condition. Modern naval ships are equipped with seawater injection nozzles on the outside for nuclear, biological and, chemical, and these nozzles are used to control external signature. Wide nozzle placement intervals and insufficient injection pressure, however, have reduced seawater dispersion area. To address this problem, nozzle installation standards must be established. In this study, an actual-scale experimental system was implemented to provide the evidence for nozzle installation standards in order to reduce the infrared signature of naval ships. In addition, the environmental conditions of the experiment were set up through computational fluid dynamics considering the ocean climate data and naval ship management conditions of South Korea. The dispersion distance was measured using a high-resolution thermography system. The flow rate, pipe pressure, and dispersion distance were analyzed, and the evidence for the installation of seawater injection nozzles and operation performance standards was suggested.

Research of Vibration Criteria of Diesel Engines in Naval Craft (함정 디젤엔진 진동규격 연구)

  • Lee, Kyoung-Hyun;Han, Hyung-Suk;Park, Mi-You;Cho, Heung-Gi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.797-802
    • /
    • 2011
  • Vibration of diesel engines in naval vessels causes structure vibration which is significant under water radiating noise source under CIS (Cavitation Inception Speed). So managing the vibration level of diesel engine is important for survivability and also durability of naval vessels. Therefore, in this research, a vibration criterion which is applied for Korean naval vessels are reviewed. It is compared with the DNV, ABS and merchant ship's diesel engine criteria. And also vibration data of three Korean naval vessels are analyzed. As a result, reasonable criteria of diesel engine vibration and shipbuilding standards are suggested.

  • PDF

Analysis of Development Trend for the Integrated Power System of Naval Vessels to Perform the High-Power and Energy Mission Load Platform (고출력 에너지 사용 체계 플랫폼 실현을 위한 해군함정의 통합 동력 시스템 발전 경향 분석)

  • Lee, Hyung-Min;Cho, Byung-Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.796-801
    • /
    • 2011
  • The objective of this work presented here was focused on analysis of development trend for the integrated power system of naval vessels to perform the high-power and energy mission load platform. These mission loads are affected by the high level of military technologies, digitalization of the ocean battlefield, high power sensor system for maximization of the ship survivability. All electric power including propulsion power for ship should be controlled by integrated single system in order to carry various high power density weapon system such as Electromagnetic Aircraft Launch System, Electromagnetic Rail Gun[feasible precision striking at long distance 200NM(370km) or over]. As the analyzing the present state of things, mechanical propulsion system is shifted into hybrid or fully electric propulsion systems to realize integrated power system at the developed countries. Such challenges include reduced dependency on foreign-supplied fossil fuel, increasing demand for installed ship power, controlling life-cycle costs.

Development of data analysis tool for combat system integration

  • Shin, Seung-Chun;Shin, Jong-Gye;Oh, Dae-Kyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.1
    • /
    • pp.147-160
    • /
    • 2013
  • System integration is an important element for the construction of naval combat ships. In particular, because impeccable combat system integration together with the sensors and weapons can ensure the combat capability and survivability of the ship, the integrated performance of the combat system should be verified and validated whether or not it fulfills the requirements of the end user. In order to conduct systematic verification and validation, a data analysis tool is requisite. This paper suggests the Data Extraction, Recording and Analysis Tool (DERAT) for the data analysis of the integrated performance of the combat system, including the functional definition, architecture and effectiveness of the DERAT by presenting the test results.

Study on Effectiveness of Ocean Meteorological Variables through Sensitivity Analysis of Ship Infrared Signature (함정 적외선신호 민감도 해석을 통한 기상변수 영향에 관한 연구)

  • Cho, Yong-Jin;Jung, Ho-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.36-42
    • /
    • 2013
  • According to a study on improving ship survivability, an IR signature represents the contrast radiance intensity between the radiation signature from a ship and the background signature. It was found from applying stealth techniques to the process of ship development that the IR signature is remarkably sensitive and dependent on the environment. In this study, marine climate data for the sea near the Korean Peninsula were collected, and the marine meteorological environment in Korean waters was defined. Based on this data, a study on the sensitivity of the IR signature of target objects was performed using analytical methods. The results of the research indicated that clouds have important effects on the infrared signature, but the velocity of the wind and the humidity have only slight effects on the IR signature. In addition, the air and seawater temperatures had hardly any effect on the IR signature, but it is judged that additional study is needed.

A Study on Operation Concept of Naval Surface to Air Defense System with Complex Assets (함대공 방어체계 복합자산 운용개념 연구)

  • Taegu Kim;Woongjae Na;Seoyeon Yang;Yeojin Park;Donghyuk Shim;Da-Bin Ryu;Nahae Yun;In-Chul Park;Lae-Eun Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.190-198
    • /
    • 2023
  • The purpose of this study was to propose an operational concept for a ship in a fleet equipped with an interceptor missile system, a naval surface to air defense system, and to develop a simulation program that reflects it. The results of the defense activities of other ships in the fleet can be reflected by receiving information about the status of the enemy missiles. The allocation of defensive assets is based on the survival probability of the ship, not on the destruction of enemy attacks, which can be obtained as the product of the expected survival probability for each enemy missile. In addition, the concept of predicted survivability was introduced to assess the loss of future defense opportunities that would result from assigning a new command. A simulation program was also developed as a tool for realizing the proposed concept of operations, which generated cases.

Study of damage safety assessment for a ship carrying radioactive waste

  • Lee, Dong-Kon;Choi, Jin;Park, Beom-Jin;Kang, Hee-Jin;Lim, Suk-Nam
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.141-150
    • /
    • 2012
  • Ship damage caused by maritime casualties leads to marine pollution and loss of life and property. To prevent serious damage from maritime casualties, several types of safety regulations are applied in ship design. Damage stability regulation is one of the most important safety issues. Designs of ships for long international voyages must comply with these regulations. Current regulations, however, do not consider the characteristics of the operating route of each ship and reflect only ship size and type of cargo. In this paper, a damage safety assessment was undertaken for a ship carrying radioactive waste in actual wave conditions. Damage cases for safety assessment were constructed on the basis of safety regulations and related research results. Hull form, internal arrangement, loading condition and damage condition were modeled for damage safety simulation. The safety simulation was performed and analyzed for 10 damage cases with various wave heights, frequency and angle of attack on an operating route. Based on evaluation results, a design alternative was generated, and it was also simulated. These results confirmed that damage safety analysis is highly important in the design stage in consideration of the operating route characteristics by simulation. Thus a ship designer can improve safety from damage in this manner.

A Study on the Characteristics of Underwater Explosion for the Development of a Non-Explosive Test System (무폭약 시험 장치 개발을 위한 수중폭발 특성에 대한 연구)

  • Lee, Hansol;Park, Kyudong;Na, Yangsub;Lee, Seunggyu;Pack, Kyunghoon;Chung, Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.6
    • /
    • pp.322-330
    • /
    • 2020
  • This study deals with underwater explosion (UNDEX) characteristics of various non-explosive underwater shock sources for the development of non-explosive underwater shock testing devices. UNDEX can neutralize ships' structure and the equipment onboard causing serious damage to combat and survivability. The shock proof performance of naval ships has been for a long time studied through simulations, but full-scale Live Fire Test and Evaluation (LFT&E) using real explosives have been limited due to the high risk and cost. For this reason, many researches have been tried to develop full scale ship shock tests without using actual explosives. In this study, experiments were conducted to find the characteristics of the underwater shock waves from actual explosive and non-explosive shock sources such as the airbag inflators and Vaporizing Foil Actuator (VFA). In order to derive the empirical equation for the maximum pressure value of the underwater shock wave generated by the non-explosive impact source, repeated experiments were conducted according to the number and distance. In addition, a Shock Response Spectrum (SRS) technique, which is a frequency-based function, was used to compare the response of floating bodies generated by underwater shock waves from each explosion source. In order to compare the magnitude of the underwater shock waves generated by each explosion source, Keel Shock Factor (KSF), which is a measure for estimating the amount of shock experienced by a naval ship from an underwater explosionan, was used.