• Title/Summary/Keyword: Naval equipment

Search Result 309, Processing Time 0.027 seconds

Structural Engineering of 60m Twin-hull typed Car-ferry (60m급 쌍동형 카페리 구조 엔지니어링 고찰)

  • Lee, Jung-Ho;Seo, Kwang-Chul;Kang, Byung-Mo;Kim, In-Chul;Park, Joo-Shin
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2017.04a
    • /
    • pp.129-130
    • /
    • 2017
  • This paper suggests study of basic structure design and structural analysis for the twin car-ferries. The rules and methodology for the analysis of strength of medium and small high speed vessels with a length of more than 50m and a width / ratio of more than 12, such as car-ferries, have not been clarified yet. Therefore, in this paper, the scantling of the members is based on the Korea Classification standards, and the car-ferries standards were additionally applied to verify the structural strength of the design. The results of this study are expected to be useful as basic data related to structural design and structural analysis of high speed twin car-ferries.

  • PDF

Hydrodynamic Performance of a 2,500-ton Class Trimaran

  • Kang, kuk-Jin;Lee, Chun-Ju;Kim, Sun-Young;Park, Yun-Rak;Lee, Jin-Tae
    • Journal of Ship and Ocean Technology
    • /
    • v.6 no.2
    • /
    • pp.23-36
    • /
    • 2002
  • This paper describes the powering, seakeeping and maneuvering performances for a 2,500-ton class trimaran. Influence of the side-hull forms and location of those in longitudinal and transverse direction to resistance performance was systematically investigated by a series of model tests and numerical calculations. It was found that the longitudinal location of side-hulls was the most influential design parameter to the resistance performance of the trimaran and the optimum location of side-hull depends on ship speeds. When the side-hull stem is located near the primary wave hollow generated by the main hull, the trimaran shows the best resistance performance. Powering performance of the trimaran is superior to those of similar mono-hull ships. Seakeeping model tests for the trimaran were executed and the results were compared with the theoretical results of a similar mono-hull ship. Generally speaking, seakeeping performance of the trimaran is superior to that of a mono-hull ship. In particular, pitching and rolling performance of the trimaran is excellent, which is due to the increased length and breadth. Maneuvering model tests using a HPMM equipment were executed to evaluate the maneuvering performance of the trimaran. Maneuvering simulation was performed using the maneuvering coefficients from the model tests. The results show that the control ability of heading angle and the direction keeping stability of the trimaran is excellent, even though the turning performance is rather worse compared to those of a similar mono-hull ship.

Analysis of the Status of Basic Industries in Military Drone (군사 드론의 기초산업 현황 분석)

  • Han, Hoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.493-498
    • /
    • 2020
  • The fourth industrial revolution is the first topic thrown by Klaus Schwab at the Davos World Economic Forum in January 2016, meaning the next industrial revolution led by the Internet of Things (IOT), artificial intelligence (AI), robot technology and life sciences. In addition, in our lives, humans, computers and machines are connected organically, and organic relationships are evolving and developing at a furious rate in all areas of life. Since the 1953 armistice agreement, South Korea has remained in a state of confrontation with North Korea, and there have been continued fighting by the North, including naval skirmishes in the West Sea, artillery attacks on Yeonpyeong Island, the sinking of the Cheonan warship, and unmanned aerial vehicles and ankle mines. To prepare for such a local initiative, our military is constantly preparing and will have to strengthen its combat capabilities by developing and introducing advanced military equipment. After all, the military drone industry linked to the Fourth Industrial Revolution following the development of new war should continue its research on military drones in line with accurate diagnosis and the rapid development of future science and technology and IT technologies.

Development of FPGA Based HIL Simulator for PMS Performance Verification of Natural Liquefied Gas Carriers (액화천연가스운반선의 PMS 성능 검증을 위한 FPGA 기반 HIL 시뮬레이터 개발)

  • Lee, Kwangkook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.7
    • /
    • pp.949-955
    • /
    • 2018
  • Hardware-in-the-loop (HIL) simulation is a technique that can be employed for developing and testing complex real-time embedded systems. HIL simulation provides an effective platform for verifying power management system (PMS) performance of liquefied natural gas carriers, which are high value-added vessels such as offshore plants. However, HIL tests conducted by research institutes, including domestic shipyards, can be protracted. To address the said issue, this study proposes a field programmable gate array (FPGA) based PMS-HIL simulator that comprises a power supply, consumer, control console, and main switchboard. The proposed HIL simulation platform incorporated actual equipment data while conducting load sharing PMS tests. The proposed system was verified through symmetric, asymmetric, and fixed load sharing tests. The proposed system can thus potentially replace the standard factory acceptance tests. Furthermore, the proposed simulator can be helpful in developing additional systems for vessel automation and autonomous operation, including the development of energy management systems.

Early Shell Crack Detection Technique Using Acoustic Emission Energy Parameter Blast Furnaces (음향방출 에너지 파라미터를 이용한 고로 철피균열의 조기 결함탐지 기술)

  • Kim, Dong-Hyun;Lee, Sang-Bum;Bae, Dong-Myung;Yang, Bo-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.1
    • /
    • pp.45-52
    • /
    • 2016
  • Blast furnaces are crucial equipment for steel production. A typical furnace risks unexpected accidents caused by contraction and expansion of the walls under an environment of high temperature and pressure. In this study, an acoustic emission (AE) monitoring system was tested for evaluating the large-scale structural health of a blast furnace. Based on the growth of shell cracks with the emission of high energy levels, severe damage can be detected by monitoring increases in the AE energy parameter. Using this monitoring system, steel mill operators can establish a maintenance period, in which actual shell cracks can be verified by cross-checking the UT. From this study, we expect that AE systems permit early fault detection for structural health monitoring by establishing evaluation criteria based on the severity of shell cracking.

Prediction for Underwater Static Magnetic Field Signature Generated by Hull and Internal Structure for Ferromagnetic Ship (강자성 함정 선체 및 내부 장비에 의한 수중 정자기장 신호 예측)

  • Yang, Chang-Seob;Chung, Hyun-Ju;Ju, Hye-Sun;Jeon, Jae-Jin
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.5
    • /
    • pp.167-173
    • /
    • 2011
  • Underwater static magnetic field signature for the naval ship has been widely used as the detonating source of the influence mine system because it is possible to make an accurate target detection in the near field although the magnetic field falls off relatively fast with distance in comparison with the underwater radiated noise signal. In this paper, we describe the prediction results about the underwater static magnetic field by the ferromagnetic hull, the internal structures and the main on-board equipment for the target vessel using the commercial FEM software. Also we analyze the degaussing effectiveness for the target vessel through the degaussing coils arrangement.

Estimation of Residual Strength for an Aged Floating Dock (노후화된 플로팅도크의 잔류 구조강도 평가)

  • Seo, Kwang-Cheol;Hong, Taeho;Park, Joo-Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.1
    • /
    • pp.122-129
    • /
    • 2019
  • Due to its nature the manufacturing industry faces a cyclical economy, and therefore there is an urgent need for a companion industry to cope with this cyclic pattern in the long run. The sector suitable for meeting this demand is the repair and shipbuilding industry. In order to operate a shipbuilding repair business, a floating dock is indispensable, and most obsolete floating docks were imported from overseas and operated through repair/maintenance. However, there is no precise guideline for floating dock safety, and most models have been in use for at least 30 years without being required to enter classification at the time of operation. In this study, structural strength analysis was carried out using measured thickness information of aged floating docks, and the residual structural strength of floating docks in operation was analyzed. The main results derived from this study can be referred to as guidelines for the review of the structural safety of similar equipment, and it is expected that an optimal solution will be found within a short time using this method for repair/maintenance.

A Study on the Support Tool for Simulator Algorithm Development (알고리즘 적용이 용이한 시뮬레이터 개발 지원 도구에 관한 연구)

  • Lee, Yeong-Ju;Kim, Ah-Young;Park, Se-Kil;Oh, Jae-Yong;Kim, Jeong-Soo
    • Journal of Navigation and Port Research
    • /
    • v.38 no.4
    • /
    • pp.385-390
    • /
    • 2014
  • Simulator is composed of several devices that have a variety of forms and functions. These devices are connected to each other by a network intricately. For this reason, simulator development and maintenance process require a lot of time and money. In order to successfully develop the simulator, it is ideal that related professionals share the work and work together in parallel. However, development is carried out inefficiently, because task interdependence makes it difficult to work in parallel. In this paper, the developments of the simulator were classified into algorithm development and system development, and it was discussed how to lower the interdependence of these two tasks and support professionals. In particular, based on the requirements analysis of the domain experts responsible for the development of the algorithm, we designed the support tool for simulator development and proposed development process using this tool. We also introduced the concept of a DataSet in order to support algorithm development of domain experts and manage data flexibly. And we designed network architecture to enable flexible reconfiguration of simulator equipment. By using the tools to support the simulator development, domain experts are able to concentrate on algorithm development and it is expected to be effective collaboration. In addition, the development plan and management are expected to be easy because the development process is systematic and clearer.

A Study to Improve the Performance of a Fixd Type Fin Stabilizer with Coanda Effect (콴다효과를 적용한 고정식 핀 안정기의 성능개선에 관한 연구)

  • Seo, Dae-Won;Lee, Se-Jin;Lee, Seung-Hee
    • Journal of Navigation and Port Research
    • /
    • v.37 no.3
    • /
    • pp.257-262
    • /
    • 2013
  • A ship operating in rough sea may suffer from an undesirable motion which may severely degrade the performance of equipment onboard and give a person an uncomfortable feeling. Hence, roll stabilization received a considerable attention and various devices including bilge keels, stabilizing fins, gyroscopic, anti-rolling tanks, rudders and flaps have been conceived and utilized for the purpose. The Coanda effect is evident when a jet stream is applied tangential to a curved surface of a hydrofoil since then the jet increases the circulation around the foil and consequently the lift. Model tests and numerical simulation have been conducted to examine the practicality of a fixed type fin stabilizer augmented by the Coanda jet. The results show that the lift coefficient of the modified Coanda fin at the zero angle of attack identically coincides with that of the original fin at ${\alpha}=\26^{\circ}$ when Coanda jet is supplied at the rate of $C_j$ = 0.25. It is also shown that fixed type fin stabilizers for active control of the motions of ships and the other mobile units without rotation can be put to practical use if the Coanda effect is applied.

Correlation between Probe Frequency and Echo-Pulse Velocity for Ultrasonic Testing of a Fiber-Reinforced Plastic Hull Plate (복합소재 선체 외판의 초음파 탐상을 위한 탐촉자 주파수와 수신기 음향 속력의 상관관계)

  • Lee, Sang-gyu;Han, Zhiqiang;Lee, Chang-woo;Oh, Daekyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.2
    • /
    • pp.219-226
    • /
    • 2020
  • Nondestructive testing is one of the most commonly used quality inspection methods for evaluating ship structures. However, accurate evaluation is dif icult because various composite materials, such as reinforcements, resin, and fiber-reinforced plastics (FRPs), are used in hulls, and manufacturing quality differences are likely to exist owing to the fabrication environment and the skill level of workers. This possibility is especially true for FRP ships because they are significantly thicker than other structures, such as automobiles and aircraft, and are mainly manufactured using the hand lay-up method. Because the density of a material is a critical condition for ultrasonic inspection, in this study, a hull plate was selected from a vessel manufactured using e-glass fiber, which is widely used in the manufacture of FRP vessels with the weight fraction of the glass content generally considered. The most suitable ultrasonic testing conditions for the glass FRP hull plate were investigated using a pulse-echo ultrasonic gauge. A-scans were performed with three probes (1.00, 2.25, and 5.00 MHz), and the results were compared with those of the hull plate thickness measured using a Vernier caliper. It was found that when the probe frequency was higher, the eco-pulse velocity of the receiver had to be lowered to obtain accurate measurement results, whereas fewer errors occurred at a relatively low probe frequency.