• 제목/요약/키워드: Naval Vessels

검색결과 401건 처리시간 0.084초

Torpedo defense system research using HMS(Hull Mount Sonar) of PCC(Patrol Combat Corvette) (초계함용 HMS(Hull Mount Sonar)를 이용한 어뢰방어시스템 연구)

  • Kim, Hee-Earn;Kim, Young-Kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 한국해양정보통신학회 2011년도 추계학술대회
    • /
    • pp.349-352
    • /
    • 2011
  • HMS(Hull Mount Sonar) equipment mounted on PCC(Patrol Combat Corvette) is suitably designed for active mode, and the specific character of sensor or system is not appropriate for the frequency range to detect a torpedo. In this article, in order to implement the function of detecting torpedoes with HMS of existing PCC, I will analyze the feature of input signals each PCCs and design a circuit to compensate reversly for the input signal in certain frequency. And also, I will suggest the most adequate torpedo defense system suitable for the special operating environment and the charateristic of naval vessels, implementing functions such as AGC of input signal and fixing the frequency range of different input signals per different warships.

  • PDF

Low-Noise Preamplifier Design for Underwater Electric Field Sensors using Chopper stabilized Operational Amplifiers and Multiple Matched Transistors (초퍼 연산증폭기와 다수의 정합 트랜지스터를 이용한 수중 전기장 센서용 저잡음 전치 증폭기 설계)

  • Bae, Ki-Woong;Yang, Chang-Seob;Han, Seung-Hwan;Jeoung, Sang-Myung;Chung, Hyun-Ju
    • Journal of Sensor Science and Technology
    • /
    • 제31권2호
    • /
    • pp.120-124
    • /
    • 2022
  • With advancements in underwater stealth technology for naval vessels, new sensor configurations for detecting targets have been attracting increased attention. Latest underwater mines adopt multiple sensor configurations that include electric field sensors to detect targets and to help acquire accurate ignition time. An underwater electric field sensor consists of a pair of electrodes, signal processing unit, and preamplifier. For detecting underwater electric fields, the preamplifier requires low-noise amplification at ultra-low frequency bands. In this paper, the specific requirements for low-noise preamplifiers are discussed along with the experimental results of various setups of matched transistors and chopper stabilized operational amplifiers. The results showed that noise characteristics at ultra-low frequency bands were affected significantly by the voltage noise density of the chopper amplifier and the number of matched transistors used for differential amplification. The fabricated preamplifier was operated within normal design parameters, which was verified by testing its gain, phase, and linearity.

Direct strength evaluation of the structural strength of a 500 cbm LNG bunkering ship

  • Muttaqie, Teguh;Jung, DongHo;Cho, Sang-Rai;Sohn, Jung Min
    • Structural Engineering and Mechanics
    • /
    • 제81권6호
    • /
    • pp.781-790
    • /
    • 2022
  • The present paper describes a general procedure of the structural safety assessment for the independent type C tank of LNG bunkering ship. This strength assessment procedure consists of two main scheme, global Finite Element Analysis (FEA) model primarily for hull structure assessment and detailed LNG Tank structures FEA model including the cylindrical tank itself and saddle-support structures. Two kinds of mechanism are used, fixed and slides constraints in fore and rear of the saddle-support structures that result in a variation of the reaction forces. Finite Element (FE) analyses have been performed and verified by the strength acceptance criteria to evaluate the safety adequacy of yielding and buckling of the hull and supporting structures. The detail of FE model for an LNG type C tank and its saddle supports was made, which includes the structural members such as cylindrical tank shell, ring stiffeners, swash bulkhead, and saddle supports. Subsequently, the FE buckling analysis of the Type C tank has been performed under external pressure following International Gas Containment (IGC) code requirements. Meanwhile, the assessment is also performed for yielding and buckling strength evaluation of the cylindrical LNG tank according to the PD 5500 unfired fusion welded pressure vessels code. Finally, a complete procedure for assessing the structural strength of 500 CBM LNG cargo tank, saddle support and hull structures have been provided.

Study on the Development of Naval MRO through the Analysis of Aviation MRO Industry (항공 MRO산업 분석을 통한 해군 MRO 발전에 대한 연구)

  • Shin, Seungmin;Oh, Kyungwon
    • Journal of Aerospace System Engineering
    • /
    • 제14권5호
    • /
    • pp.130-138
    • /
    • 2020
  • In this paper, a plan to expand the scale of the domestic MRO industry was proposed by finding the technical common points between the aviation MRO and naval vessel MRO industries. The aviation MRO industry is led by Europe, North America, and Singapore. Europe and North America have very large aviation industries. The reason for the development of the MRO industry in Singapore is that the aviation MRO and ship MRO industries gathered to expand the industrial scale. The MRO field is an industry that spans all fields from research & development, production, manufacturing, operation, disposal, and crew training. The MRO industry is divided into military and civilian use. However, most of them are only differences in the needs of users, and there are no significant technical differences. The weapon system used by the military is steadily developing. It is impossible for the military to maintain all equipment at a time when troops are reduced. For that reason, it is necessary to share roles in each field. There is a need for an MRO industry in which civil and military operations cooperate to maintain all weapon systems at optimal performance. And the MRO industry development should be based on the civil market. The scale of the MRO industry should be expanded by gathering equipment commonly used in aircraft and naval vessels. This can increase military availability and reduce maintenance budgets.

A Study on the Resistance Characteristics of Leisure Boat According to Chine Shape (차인 형상에 따른 레저선박의 저항특성에 관한 연구)

  • Kim, Juyeol;Choi, Junho;Oh, Jungkeun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • 제23권5호
    • /
    • pp.566-573
    • /
    • 2017
  • The chine of high speed vessels does not only play a role in changing position when planing but also helps balancing the hull. It also has a great influence on resistance performance. However, designing a chine requires a lot of experience because it is influenced by various factors such as displacement, transom shape, draft and width. Such a design is not based on an empirical formula, but the purpose of this study is to provide basic guidelines regarding the shape of chine through calculation. This design was developed using Yacht-one, a commercial design program, and analysis was performed using Star-CCM+, also a commercial analysis program. Analysis of the hull selected in this study was carried out by Dynamic Fluid Body Interaction (DFBI) method. Analysis of the chine was carried out at chine angles of 15, 16, 17, and 19degrees, at a speed of 30knots. The result indicated that the highest trim occurred at 16 degrees among the four chine angles considered, and the highest heave occurred at 15degree. In terms of resistance performance, minimum resistance was observed at 16 degrees. Consequently, for minimum ship resistance, it is necessary to complete calculations in accordance with the chine angles, ${\pm}2$ degrees from the initial chine angle, which should be carried out a the design stage.

Preliminary Study on Factor Technology of Selective Catalytic Reduction System in Marine Diesel Engine (선박용 디젤엔진 SCR 시스템 요소 기술에 관한 기초 연구)

  • Park, Yoon-Yong;Song, Ha-Cheol;Ahn, Gi-Ju;Shim, Chun-Sik
    • Journal of Navigation and Port Research
    • /
    • 제40권4호
    • /
    • pp.173-181
    • /
    • 2016
  • From 2016, controls on reduction of NOx and SOx emissions from the vessels that are operated in the emission control area were tightened. The selectivity catalytic reduction system of the denitrification equipment which NOx among the above controlled materials is very effective and used commercially very much. But it has the disadvantage that CSR is activated at high temperatures. Therefore, the SCR and SCR activation instrument that can react even at low temperatures by using micro-nano bubbles so that the above problems can be minimized were developed. And the computational fluid dynamics technique was used by ANSYS-CFX package to prepare the plan that improves the SCR system's efficiency. Simulation for the viscous flow analysis of the SCR system was executed by applying the Navier-Stokes equation to it as a governing equation. For the SCR system's shape, 3D modeling was done by using CATIA V5. SCR jet nozzle's position was checked by changing it to the intervals of 1/3, 1/2, and 2/3 from the inlet of the vent pipe to compare the SCR system's efficiency. And the number of nozzles was compared and analyzed by simulating 4, 6, and 8 holes to check an effect of the number on the SCR system's efficiency. The simulation result has found that the closer nozzles are to the inlet of the vent pipe and the more nozzles are, the more efficiency is improved.

Method for Increasing Stability by Reducing the Motion of a Lightweight Floating Body (경량 부유체의 운동 저감으로 안정성 증가방법에 관한 연구)

  • Seon-Tae Kim;Jea-Yong Ko;Yu-mi Han
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • 제29권4호
    • /
    • pp.407-416
    • /
    • 2023
  • Demand for leisure facilities such as mooring facilities for berthing leisure vessels and floating pensions based on floating bodies is increasing owing to the rapid growth of the population and related industries for marine leisure activities. Owing to its relatively light weight as a fluid, inclination is easily generated by waves and surcharges flowing to the coast, resulting in frequent safety accidents because of the low stability. As a solution to this problem, a motion reduction device for floating bodies is proposed in this study. The device (motion reduction device based on the air pressure dif erence) was attached to a floating body and the effect was analyzed by comparing the results with those of a floating body without motion reduction. The effect analysis was further analyzed using a computer analysis test, and the method for increasing the stability of the floating body was studied, and its the effect was verified. Based on the analysis of the test results, the stability of the floating body increased with a motion damping device is higher than that of the floating body without a motion reducing device as the wave momentum reduces, owing to the air pressure difference. Therefore it was concluded that the use of such a device for reducing motion a floating body is useful not only for non-powered ships but also for powered and semi-submersible ships, and further research should be conducted by applying it to various fields.

Structural Analysis of the Governing Variables Affecting the Structural Strength Evaluation of the Lashing Bridges in Container Vessels (컨테이너선 라싱 브릿지 구조 강도 평가에 영향을 미치는 주요 변수의 구조해석)

  • Myung-Su Yi;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • 제29권2호
    • /
    • pp.230-237
    • /
    • 2023
  • Due to the COVID-19 pandemic and climate change, shortages of essential commodities and resources continue to occur globally. To address this problem, trade volume demand suddenly increased, driving up the freight rate of container ships sharply. The size of container vessels progressively increased from 1,500 TEU (twenty-foot equivalent unit) in the 1960s to 24,400 TEU in 2021. As the improvement of container loading capacity is closely related to the enlargement of the lashing bridge structure, it is necessary to design a structure effective for good container securing and safe under the various external loads that occur during voyage. Major classification societies have recently issued structural-analysis-based guidelines to evaluate the structural safety of lashing bridges, but their acceptance criteria and evaluation methods are different, causing confusion among engineers during design. In this study, the strength change characteristics are summarized by variations in the main variables (modeling range, opening consideration, mesh size) likely to affect the results. Based on this result, the authors propose a reasonable structural-analysis-based evaluation that is expected to serve as a reference in the next revision of classification standards.

The Comparison of Seakeeping Performance Analysis Methods for a High Speed Catamaran (Strip and 3-D Panel Method) (초고속 쌍동선에 대한 내항성능 해석 방법 비교 (스트립 방법과 3-D Panel 방법))

  • Lee, Ho-Young;Song, Ki-Jong;Yum, Deuk-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • 제33권2호
    • /
    • pp.127-138
    • /
    • 1996
  • The strip method, unified theory and 3-D panel method are commonly used methods for the seakeeping analysis of high-speed vessels. The strip method which is basically 2-dimensional method is known to give incorrect hydrodynamic coefficients and motion responses for the cases of high speed and low frequency region. And the unified theory which uses two dimensional approach in inner domain and slender body theory in outer domain is very complicate in computational modelling. Though the 3-D panel method requires comparatively long computation time, it is believed that the method gives good results without any limitation in ship speed and range of frequency for computation. In the 3-D panel method the source singularity representing translating and pulsating Green function is used and Hoff's method is adopted for the numerical calculation of the Green function. The computation time can be reduced by using the symmetry relationship with respect to longitudinal axis. In this paper the strip method and the 3-D panel method are compared for the seakeeping analysis of a high-speed catamaran. The Compared items are the hydrodynamic coefficients, wave exciting forces, frequency response functions and short-term responses in irregular waves.

  • PDF

A Study on the Improvement of Hull-Form Design for Propulsion Type Change of Net Boat Mounted on Tuna Purse Seiner (다랑어 선망어선 탑재용 보조 작업선의 추진기 타입 변화에 의한 선형 개선 연구)

  • Lim, Jun-Taek;Jang, Ho-Yun;Lee, Kyoung-Woo;Seo, Kwang-Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • 제24권6호
    • /
    • pp.810-817
    • /
    • 2018
  • In Korea, tuna purse seine fishery is the industry with the highest production volume in domestic deep-sea fishery. Research has been continuously carried out since the late 1980s, and research on modernization of technology has been actively conducted. However, while auxiliary works boats on the fishing vessels play an important role in the purse seine fishing, related research is not sufficient. In this study, we tried to rebuild the propulsion system of the Net-boat from the propeller to the waterjet type and to perform the hull form conversion to improve the resistance performance of the hull part and improve the motion performance. For this, we calculated the change of the fluid performance of the ship through computational numerical analysis. In addition, towing tank tests were carried out to verify the performance of the existing ship and the ship which changed the propulsion system. As a result, resistance performance of the waterjet type compared to the propeller type was improved by approximately 45 %. It was confirmed that this was due to reduction of the wetted surface area by removing net and improvements in hull form.