• Title/Summary/Keyword: Naval Ships

Search Result 1,232, Processing Time 0.025 seconds

Bank Effect of a Ship Operating in a Shallow Water and Channel (천수 및 수로 운항 시 선박의 측벽효과)

  • Park, Dong-Woo;Choi, Hee-Jong;Pai, Kwang-Jun
    • Journal of Navigation and Port Research
    • /
    • v.38 no.1
    • /
    • pp.19-27
    • /
    • 2014
  • When a ship operates in a shallow water and channel, the hull sinkage and asymmetrical force generated around the ship by the influence of sea bottom and bank walls are caused collision with sea bottom, other ships or the bank itself. Especially, the shipping company and pilots navigating the area of Europe and North America with many channels are deal with it as a important matter to prevent collision. In this paper, hydrodynamic force generated between the ship and bank using the numerical analysis for the safe navigation of ship, that is, sway force and yaw moment should be presumed qualitatively. It makes a program for fluid analysis of the shallow water and bank effect. Analyses are carried out for three kind of parameter, that is, ship's speed, water depth and ship-bank distance for crude oil carriers. The numerical analysis results are compared with results of the experiments and the previous published papers.

Strength Analysis and Standardization for Closed Chocks by Using the Finite Elements Method (유한요소법을 이용한 클로즈드 초크의 구조검증 및 표준화에 대한 연구)

  • Jung, Jae-Wook;Lee, Byung-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.2
    • /
    • pp.132-145
    • /
    • 2012
  • Mooring fittings mean various devices and fittings to safely fasten vessels to quays, jetties and sea-floating buoys, etc. They include mooing winches, capstans, chocks, fairleads, guide rollers, bollards, and bitts. Not only the seats and reinforced parts for the installation of fittings but also ropes and chains for mooring and chain stoppers can be also considered. Because of damages to mooring fittings during mooring directly related to large-scale accidents such as the drifting of vessels, mooring fittings with strength appropriate for the physical features of the vessels must be installed. The reinforcement of the vessels on which the mooring fittings are installed must be designed to withstand the loads transferred from the fittings as well. Also mooring fittings with efficient strength should be required because damaged ships lead to sea pollution such as oil or fuel oil spillage. This study has been performed by the Finite Element Method for two aspects of closed chocks which are divided into structure-supporting shapes and working load. In the case of structure-supporting shapes, they have been performed in the field of sheet and bulwark. As for working load, it has been analyzed according to working load direction such as chock's side and below. At first, strength analysis for unique closed chocks has been carried out by using the Finite Element Method, they are applied for the situation when vessels pass by the panama canal. And then the experiment has been done to verify the analyzed date obtained by FEM. The experimental results were found to be similar to the numerical results with up to 16% difference. On the basis of the results obtained, standardization has been carried out by the Finite Element Method for various sizes of closed chocks.

Study on Hot Spot Stress Calculation for Welded Joints using 3D Solid Finite Elements (3차원 솔리드 요소를 이용한 용접부 핫스팟 응력 계산에 대한 연구)

  • Oh, Jung-Sik;Kim, Yooil;Jeon, Seok-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.45-55
    • /
    • 2015
  • Because of the high stress concentration near the toe of a welded joint, the calculation of local stress using the finite element method which is relevant to the fatigue strength of the weld toe crack, is a challenging task. This is mainly caused by the sensitivity of finite element analysis, which usually occurs near the area of a dramatically changing stress field. This paper presents a novel numerical method through which a less mesh-sensitive local stress calculation can be achieved based on the 3D solid finite element, strictly sticking to the original definition of hot spot stress. In order to achieve the goal, a traction stress, defined at 0.5t and 1.5t away from the weld toe, was calculated using either a force-equivalent or work-equivalent approach, both of which are based on the internal nodal forces on the imaginary cut planes. In the force-equivalent approach, the traction stress on the imaginary cut plane was calculated using the simple force and moment equilibrium, whereas the equivalence of the work done by both the nodal forces and linearized traction stress was employed in the work-equivalent approach. In order to confirm the validity of the proposed method, five typical welded joints widely used in ships and offshore structures were analyzed using five different solid element types and four different mesh sizes. Finally, the performance of the proposed method was compared with that of the traditionally used surface stress extrapolation method. It turned out that the sensitivity of the hot spot stress for the analyzed typical welded joints obtained from the proposed method outperformed the traditional extrapolation method by far.

Generation of Freak Waves in a Numerical Wave Tank and Its Validation in Wave Flume (수치파 수조에서의 극치파 생성과 수조실험을 통한 검증 연구)

  • Jeong, Seong-Jae;Park, Seong-Wook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.5
    • /
    • pp.488-497
    • /
    • 2009
  • The freak wave, also known as New-Year-Wave in the north Atlantic, is relatively large and spontaneous ocean surface wave that can sink even large ships and destroy maritime structures. To understand oceanic conditions that develop freak waves, we simulated and generated two versions of scale-downed waves (1:64 and 1:42) in a numerical wave tank and compared the results with the experiment in wave flume. Both of the breaking and non-breaking waves were generated in the simulation. The numerical simulation was implemented based on the finite volume method and a genetic optimization algorithm. Random values were assigned as the initial values for the parameter in the control function, which produced signals representing the motion of wave-maker. The same signal obtained from the optimization process was used for both of the simulation and the experiment. By varying the object function and restrictions of the simulation, a best profile of design wave was selected based on the characteristics, height and period of simulated waves. Results showed that the simulation and experiment with the scale of 1:42 agreed better with freak waves in the natural condition. The presented simulation method will contribute to saving the time and cost for conducting subsequent response analyses of motion under freak waves in the course of the model test for ship and maritime structure.

Erection Process Planning & Scheduling using Genetic Algorithm (유전 알고리즘을 이용한 탑재 공정과 일정 계획)

  • J.W. Lee;H.J. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.9-16
    • /
    • 1995
  • The erection process planning is to decide erection strategy and sequence that satisfies dock duration. The erection scheduling is to decide erection date of each block. The load profile varies according to scheduling and it is related to building cost. It must be possible to simulate the various combinations of process plan and schedule for optimal planning. To develop the process planning system for optimal planning, the system that generate the sequence of erection automatically and the load leveling system are required. This paper suggests the method that generates the erection sequence. The load leveling should be done to all the ships in the same dock batch to get reliable results. In this case since the search space is very large, efficient optimization method is needed Our research achieved the load leveling system using Genetic Algorithm. This system made it possible to simulate various process plans to which schedule is considered.

  • PDF

A Study on Rotary Bending Fatigue Strength of the $CO_2$ Gas Welded Joint in Air and Sea Water ([$CO_2$] 용접이음재의 대기 및 해수중에서의 회전굽힘 피로강도에 관한 연구)

  • S.W. Kang;S.Y. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.2
    • /
    • pp.118-126
    • /
    • 2000
  • TMCP steel has been widely used to construct ships and offshore structures. When it comes to ship and offshore structures, corrosion fatigue damages caused by sea water and fatigue occurred by wave-induced forces usually go on occurring simultaneously. So the fatigue life in corrosion environment is decreased markedly in comparison with that in air. The fatigue crack in corrosion easily initiates on welded joints of structure like as the fatigue crack in air. Therefore it is very important to study the fatigue properties of those of their welded joints as well as steel plates. In this study, rotary bending fatigue tests have been performed to investigate fatigue crack initiation and behavior of fatigue crack growth on CO2 gas weld HAZ of TMCP steel. The fatigue test used the specimens with various stress concentration factors in air and 3% NaCl solution

  • PDF

Quality Assessment of Hatchway Using QFD & FMEA (QFD와 FMEA를 이용한 화물창구의 품질 평가)

  • Seung-Min Kwon;Young-Soon Yang;Chan-Ho Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.78-89
    • /
    • 2000
  • The quality of a product/system is getting more important concept nowadays. 'Performance', as one of the quality characteristics, means how well a product carries out its given functions and is the most adjacent characteristics to the customer satisfaction. To an engineer, however, who deals with large structures such as ships, 'Safety' is actually getting more important because of its direct relationship with failures of a product/system itself and human injuries when an accident occurs. In this study, therefore, we consider both performance and safety recognized the most important elements in dealing with structures and present a quality analysis method based on customer requirements by using QFD for performance analysis and FMEA for safety analysis respectively. Applying these methods to the hatchway of a bulk carrier, we could find 8 and 12 important parts based on performance and safety respectively. Among these, only 7 parts were pointed out commonly critical. From these, we can suggest that designers should pay more attention to these 7 parts and thus give a high priority of concerns to them when trying to improve the quality of system.

  • PDF

A Verification Study on the Demand Performance of Fabric Duct for Localization Development of Naval Vessel (해군 수상함 국산화개발 천 덕트의 요구성능 검증연구)

  • Jung, Young In;Choi, Sang Min;Jung, Hyun Sub;Sim, Min Sub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.468-474
    • /
    • 2020
  • Metal ducts for transporting air conditioning and heating inside ships have recently been replaced by cloth ducts that have the advantage of delivering air evenly to the compartments, with excellent noise reduction in major compartments, such as combat command rooms, steering rooms, and sound detector cabins. Since the performance requirements of fabric ducts for vessels are strict, and the entire length of the ducts was imported from Korea, the government wants to create economic effects through localization of fabric ducts. Air permeability and fire prevention performance tests verified the applicability to naval vessels of fabric ducts developed by Hyundai Heavy Industries and HiDact, and performance requirements presented in the POS were verified. As a result of the tests, the fabric ducts met the requirements for air permeability and fireproof performance.

Effect of Stern Wedge on the Wave Making Resistance of Chine Hull Form (선미 웨지가 차인선형의 조파저항에 미치는 영향)

  • Lee Dae-Hoon;Lew Jae-Moon;Kang Dae-Sun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.2
    • /
    • pp.92-97
    • /
    • 2006
  • Hull forms of a high speed small boat have been developed through numerical studies. A round bilge type hull form has been drived form a using chine hull form with HCAD, a hull form variation software. Wave resistance and the flow fields around the ships have been computed using well-known software, WAVIS. This software employs Rankine source method with non-linear tree surface condition as well as dry transom boundary conditions. The round bilge hull form showed better resistance performance than to the chine hull form for the whole speed range. However, considering the building and labor costs of the small shipyard, the chine hull form has been selected and its wave resistance characteristics has been improved by modifying the bow regions and applying the stem wedge. It is found that the effect of stem wedge is quite satisfactory to improve the resistance characteristics of high speed chine hull form.

  • PDF

Development of a Ventilating Waterjet Propulsor for Super-High Speed Ships (초고속선을 위한 공기유입 물제트 추진기 개발)

  • J.T. Lee;I.S. Moon;Y.H. Park;K.Y. Kim;K.S. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.3
    • /
    • pp.41-49
    • /
    • 1999
  • A feasibility study is performed for practical application of a Ventilating Water-Jet(VWJ) propulsor which attracts new attention as a candidate propulsor for super-high speed vessels. Super-cavitating foil sections are adopted for the rotor blades since the rotor is operating at ventilating condition. Wedge type and cavitator type foil sections are used for the design of rotor blades. Other geometric characteristics of rotors are selected from the Kaplan type ducted propeller rotors. The test section of KRISO cavitation tunnel is modified to perform open-water tests of the VWJ propulsors. The tests are performed both at fully-submerged and free-jet conditions. Ventilation occurred at the free-jet condition by sucking the air in the downstream side of the rotor, which easily develops as super-cavitation when the rotor operates at lower advance coefficients. Spoilers are attached at the trailing end of the pressure side of the blade section, in order to increase the lift force.

  • PDF