• Title/Summary/Keyword: Natural-based solution

Search Result 506, Processing Time 0.025 seconds

Thermal loading effects on electro-mechanical vibration behavior of piezoelectrically actuated inhomogeneous size-dependent Timoshenko nanobeams

  • Ebrahimi, Farzad;Salari, Erfan
    • Advances in nano research
    • /
    • v.4 no.3
    • /
    • pp.197-228
    • /
    • 2016
  • In the present study, thermo-electro-mechanical vibration characteristics of functionally graded piezoelectric (FGP) Timoshenko nanobeams subjected to in-plane thermal loads and applied electric voltage are carried out by presenting a Navier type solution for the first time. Three kinds of thermal loading, namely, uniform, linear and non-linear temperature rises through the thickness direction are considered. Thermo-electro-mechanical properties of FGP nanobeam are supposed to vary smoothly and continuously throughout the thickness based on power-law model. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of nanobeam. Using Hamilton's principle, the nonlocal equations of motion together with corresponding boundary conditions based on Timoshenko beam theory are obtained for the free vibration analysis of graded piezoelectric nanobeams including size effect and they are solved applying analytical solution. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FGP nanobeams as compared to some cases in the literature. In following a parametric study is accompanied to examine the effects of several parameters such as various temperature distributions, external electric voltage, power-law index, nonlocal parameter and mode number on the natural frequencies of the size-dependent FGP nanobeams in detail. It is found that the small scale effect and thermo-electrical loading have a significant effect on natural frequencies of FGP nanobeams.

Vibration analysis of double-walled carbon nanotubes based on Timoshenko beam theory and wave propagation approach

  • Emad Ghandourah;Muzamal Hussain;Amien Khadimallah;Abdulsalam Alhawsawi;Essam Mohammed Banoqitah;Mohamed R. Ali
    • Advances in nano research
    • /
    • v.14 no.6
    • /
    • pp.521-525
    • /
    • 2023
  • This paper concerned with the vibration of double walled carbon nanotubes (CNTs) as continuum model based on Timoshenko-beam theory. The vibration solution obtained from Timoshenko-beam theory provides a better presentation of vibration structure of carbon nanotubes. The natural frequencies of double-walled CNTs against half axial wave mode are investigated. The frequency decreases on decreasing the half axial wave mode. The shape of frequency arcs is different for various lengths. It is observed that model has produced lowest results for C-F and highest for C-C. A large parametric study is performed to see the effect of half axial wave mode on frequencies of CNTs. This numerically vibration solution delivers a benchmark results for other techniques. The comparison of present model is exhibited with previous studies and good agreement is found.

Sulfate Resistance of Alkali Activated Pozzolans

  • Bondar, Dali;Lynsdale, C.J.;Milestone, N.B.;Hassani, N.
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.2
    • /
    • pp.145-158
    • /
    • 2015
  • The consequence of sulfate attack on geopolymer concrete, made from an alkali activated natural pozzolan (AANP) has been studied in this paper. Changes in the compressive strength, expansion and capillary water absorption of specimens have been investigated combined with phases determination by means of X-ray diffraction. At the end of present investigation which was to evaluate the performance of natural alumina silica based geopolymer concrete in sodium and magnesium sulfate solution, the loss of compressive strength and percentage of expansion of AANP concrete was recorded up to 19.4 % and 0.074, respectively.

Fault Detection Method of Pipe-type Cantilever Beam with a Tip Mass (말단질량을 갖는 원형강관 캔틸레버 보의 결함탐지기법)

  • Lee, Jong Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.11
    • /
    • pp.764-770
    • /
    • 2015
  • A crack identification method using an equivalent bending stiffness and natural frequency for cracked beam is presented. Modal properties of cantilever beam with a tip mass is identified by applying the boundary conditions to a general solution. An equivalent bending stiffness for cracked beam based on an energy method is used to identify natural frequencies of cantilever thin-walled pipe with a tip mass, which has a through-the-thickness crack, subjected to bending. The identified natural frequencies of the cracked beam are used in constructing training patterns of neural networks. Then crack location and size are identified using a committee of the neural networks. Crack detection was carried out for an example beam using the proposed method, and the identified crack locations and sizes agree reasonably well with the exact values.

A Numerical Study of Natural Convection in a Square Enclosure with a Circular Cylinder at Different Vertical Locations (원형 실린더가 존재하는 사각형 실린더 내부의 자연대류에 관한 수치적 연구)

  • Kim, Byeong-Su;Lee, Dae-Sung;Yoon, Hyun-Sik;Lee, Hyun-Goo;Ha, Man-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.3 s.258
    • /
    • pp.273-282
    • /
    • 2007
  • Numerical calculations are carried out for the natural convection induced by temperature difference between a cold outer square cylinder and a hot inner circular cylinder. A two-dimensional solution for unsteady natural convection is obtained, using the immersed boundary method (IBM) to model an inner circular cylinder based on finite volume method, for different Rayleigh numbers varying over the range of $10^4\;to\;10^6$. The study goes further to investigate the effect of an inner cylinder location on the heat transfer and fluid flow. The location of inner circular cylinder is changed vertically along the center-line of square enclosure. The number, size and formation of cell strongly depend on Rayleigh number and the position of inner circular cylinder. The changes in heat transfer quantities have been presented.

Modeling the size effect on vibration characteristics of functionally graded piezoelectric nanobeams based on Reddy's shear deformation beam theory

  • Ebrahimi, Farzad;Fardshad, Ramin Ebrahimi
    • Advances in nano research
    • /
    • v.6 no.2
    • /
    • pp.113-133
    • /
    • 2018
  • In this work, free vibration characteristics of functionally graded piezoelectric (FGP) nanobeams based on third order parabolic shear deformation beam theory are studied by presenting a Navier type solution as the first attempt. Electro-mechanical properties of FGP nanobeam are supposed to change continuously throughout the thickness based on power-law model. To capture the small size effects, Eringen's nonlocal elasticity theory is adopted. Using Hamilton's principle, the nonlocal governing equations for third order shear deformable piezoelectric FG nanobeams are obtained and they are solved applying analytical solution. By presenting some numerical results, it is demonstrated that the suggested model presents accurate frequency results of the FGP nanobeams. The influences of several parameters including, external electric voltage, power-law exponent, nonlocal parameter and mode number on the natural frequencies of the size-dependent FGP nanobeams is discussed in detail.

U2Net-based Single-pixel Imaging Salient Object Detection

  • Zhang, Leihong;Shen, Zimin;Lin, Weihong;Zhang, Dawei
    • Current Optics and Photonics
    • /
    • v.6 no.5
    • /
    • pp.463-472
    • /
    • 2022
  • At certain wavelengths, single-pixel imaging is considered to be a solution that can achieve high quality imaging and also reduce costs. However, achieving imaging of complex scenes is an overhead-intensive process for single-pixel imaging systems, so low efficiency and high consumption are the biggest obstacles to their practical application. Improving efficiency to reduce overhead is the solution to this problem. Salient object detection is usually used as a pre-processing step in computer vision tasks, mimicking human functions in complex natural scenes, to reduce overhead and improve efficiency by focusing on regions with a large amount of information. Therefore, in this paper, we explore the implementation of salient object detection based on single-pixel imaging after a single pixel, and propose a scheme to reconstruct images based on Fourier bases and use U2Net models for salient object detection.

Free vibration of deep and shallow curved FG nanobeam based on nonlocal elasticity

  • S.A.H., Hosseini;O., Rahmani;V., Refaeinejad;H., Golmohammadi;M., Montazeripour
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.1
    • /
    • pp.51-65
    • /
    • 2023
  • In this paper, the effect of deepness on in-plane free vibration behavior of a curved functionally graded (FG) nanobeam based on nonlocal elasticity theory has been investigated. Differential equations and boundary conditions have been developed based on Hamilton's principle. In order to figure out the size effect, nonlocal theory has been adopted. Properties of material vary in radial direction. By using Navier solution technique, the amount of natural frequencies has been obtained. Also, to take into account the deepness effect on vibrations, thickness to radius ratio has been considered. Differences percentage between results of cases in which deepness effect is included and excluded are obtained and influences of power-law exponent, nonlocal parameter and arc angle on these differences percentage are studied. Results show that arc angle and power law exponent parameters have the most influences on the amount of the differences percentage due to deepness effect. It has been observed that the inclusion of geometrical deep term and material distribution results in an increase in sensitivity of dimensionless natural frequency about variation of aforementioned parameters and a change in variation range of natural frequency. Finally, several numerical results of deep and shallow curved functionally graded nanobeams with different geometry dimensions are presented, which may serve as benchmark solutions for the future research in this field.

A Study on Activistic Construction of Number Concept in the Children at the Beginning of School Age (학령 초의 활동주의적 수 개념 구성에 관한 연구)

  • Ko, Jung-Hwa
    • Journal of Educational Research in Mathematics
    • /
    • v.17 no.3
    • /
    • pp.309-331
    • /
    • 2007
  • Mathematics education starts from learning the concept of number. How the children at the beginning of school age learn the concept of natural number is therefore important for their future mathematics education. Since ancient Greek period, the concept of natural number has reflected various mathematical-philosophical points of view at each period and has been discussed ceaselessly. The concept of natural number is hard to define. Since 19th century, it has also been widely discussed in psychology and education on how to teach the concept of natural number to the children at the beginning of school age. Most of the works, however, were focused on limited aspects of natural number concept. This study aims to show the best way to teach the children at the beginning of school age the various aspects of natural number concept based on activistic perspective, which played a crucial role in modern mathematics education. With this purpose, I investigated the theory of the activistic construction of knowledge and the construction of natural number concept through activity, and activistic approaches about instruction in natural number concept made by Kant, Dewey, Piaget, Davydov and Freudenthal. In addition, I also discussed various aspects of natural number concept in historical and mathematical-philosophical points of view. Based on this investigation, I tried to find out existing problems in instructing natural number to primary school children in the 7th National Curriculum and aimed to provide a new solution to improve present problems based on activistic approaches. And based on activistic perspective, I conducted an experiment using Cuisenaire colour rods and showed that even the children at the beginning of school age can acquire the various aspects of natural number concept efficiently. To sum up, in this thesis, I analyzed epistemological background on activistic construction of natural number concept and presented activistic approach method to teach various aspects of natural number concept to the children at the beginning of school age based on activism.

  • PDF

Optimal Design of Dynamic System Using a Genetic Algorithm(GA) (유전자 알고리듬을 이용한 동역학적 구조물의 최적설계)

  • Hwang, Sang-Moon;Seong, Hwal-Gyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.116-124
    • /
    • 1999
  • In most conventional design optimization of dynamic system, design sensitivities are utilized. However, design sensitivities based optimization method has numbers of drawback. First, computing design sensitivities for dynamic system is mathematically difficult, and almost impossible for many complex problems as well. Second, local optimum is obtained. On the other hand, Genetic Algorithm is the search technique based on the performance of system, not on the design sensitivities. It is the search algorithm based on the mechanics of natural selection and natural genetics. GA search, differing from conventional search techniques, starts with an initial set of random solutions called a population. Each individual in the population is called a chromosome, representing a solution to the problem at hand. The chromosomes evolve through successive iterations, called generations. As the generation is repeated, the fitness values of chromosomes were maximized, and design parameters converge to the optimal. In this study, Genetic Algorithm is applied to the actual dynamic optimization problems, to determine the optimal design parameters of the dynamic system.

  • PDF