• Title/Summary/Keyword: Natural recycling

Search Result 377, Processing Time 0.023 seconds

Effects of Aging and Soil Texture on Composting of Diesel-Contaminated Soil (디젤오염기간 및 토성이 오염토양 콤포스팅 처리에 미치는 영향)

  • Choi, Jung-Young;Namkoong, Wan;Park, Joon-Seok;Hwang, Eui-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.2
    • /
    • pp.132-139
    • /
    • 2002
  • This study was carried out to investigate the effects of aging and soil texture on composting of diesel-contaminated soil. The soils used for this study were silt loam and sand. Target contaminant, diesel oil, was spiked at 10,000mgTPH/kg of dry soil. Aging times of diesel-contaminated soils were 15days and 60days, respectively. Fresh diesel-contaminated soil was also investigated. Moisture content was controlled to 70% of soil field capacity. Mix ratio of soil to sludge was 1:0.3 as wet weight basis. Temperature was maintained at $20^{\circ}C$ Volatilization loss of TPH was below 2% of initial concentration. n-Alkanes lost by volatilization were mainly by the compounds of C10 to C17. Diesel in contaminated soil was mainly removed by biodegradation mechanism. First order degradation rate constant of TPH in sandy soil was ranged from 0.081 to 0.094/day, which is higher than that in silt loam(0.056-0.061/day). From fresh to 60day-aged soils, there was little difference of TPH biodegradation rate between the soils. Carbon recovery ranged from 0.61 to 0.89. TPH degradation rate was highly correlated with $CO_2$ production rate.

  • PDF

A Study on Recycling Plan for the Dehydrated Sludge of Water Treatment Plant (탈수 처리된 정수장 슬러지의 재활용 방안 연구)

  • Chung Youn-In;Chang Yong-Chai;Choi Byoung-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.2 s.25
    • /
    • pp.107-113
    • /
    • 2006
  • Water treatment plant sludge occurred in sedimentation and inverse wash process is generally disposed by ocean dumping or reclamation after dehydration processing using mechanical or natural dry method. Recently, ocean dumping of sludge is limited actually by London Convention. Physical, chemical, and geotechnical characteristics of water treatment plant sludge were analyzed by experiments. The possibilities for recycling of the dehydration sludges as materials for covering sanitary landfill were examined. Experiments performed with sludges mixed with general soil to improved the sludge properties are the hydrometer analysis, the liquid and plastic limit test, the specific gravity test, the compaction test, and the unconfined compression test. The value of ${\gamma}_{dmax}$ is increased and OMC(Optimum Moisture Content) is lessened with mixed sludge. The value of maximum compressive strength and friction angle are increased and the cohesion is decreased with mixed sludge. The ratio between sludge and soil in mixed sludge was 3:7 and the strength of mixed sludge showed $3.6kg/cm^2$. These results satisfy the regulation of U.S. E.P.A regarding materials for covering sanitary landfill.

  • PDF

A Study on the Remediation using Microbial Activator from Oil-Contaminated Soil (미생물활성화제를 이용한 유류오염토양 복원에 관한 연구)

  • Lee, Chae-Young;Chung, Chan-Kyo;Kim, Jong-Moon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.2
    • /
    • pp.41-48
    • /
    • 2011
  • In this study, the soil remediation by landfarming was carried out using microbial activators. Feasibility studies and reduction capacity of TPH(Total Petroleum Hydrocarbons) were investigated in order to find out how fast and eco-friendly the contaminated soil can be recovered. The lab-test confirmed not only the performance and degradation efficiency of microbial activators but also the effect of TPH reduction in the contaminated soil. The optimum growth conditions for indigenous microorganisms were identified using microbial activators. Based on the results of TPH removal, although there had been a little of difference in between natural decomposition and microbial activators until 20 days, the sample groups of microbial activators were higher than the control ones after 20 days. Microbial activators were applied to the field experiments on landfarming. Based on the results of removal rate in each floor of soil, it was found that the removal rates were 85.8 % in the upper, 84.4 % in the middle, and 66.10 % in the bottom. Considering that the reduction rate of TPH for the control group averaged 71.1%, the microbial activators might not be fully transferred into the bottom, which resulted from the piles of soil. As the piles have already reached 1 m in the field experiments, the low piles of soil under 0.6 m may enhance the treatment efficiency of TPH.

Growth Properties of Mixtures with Mixed Organic Fertilizer and Dried Food Waste Powder in Pakchoi (Brassica rapa L.) (음식물류폐기물건조분말과 혼합유기질비료 혼합물의 청경채 생장 효과)

  • Kim, Young-Sun;Cho, Sung-Hyun;Lee, Hoonsoo;Lee, Geung-Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.3
    • /
    • pp.17-25
    • /
    • 2021
  • This study was conducted to investigate effects of mixture with dried food waste powder (FWP) and mixed organic fertilizer (MOF) on growth of pakchoi. As compared with non-fertilizer treatment (NF) or control (MOF treatment), growth of pakchoi in FWP treatments (2,500 kg/ha, 5,000 kg/ha, 10,000 kg/ha) was inhibited by salt (NaCl) content in the FWP. In comparison with control, mixtures of MOF and FWP (FWP10, FWP20, and FWP30 treatment) were not significantly different, and their salt content correlated with pakchoi growth factors negatively (P<0.05). Applied of FWP10, (FWP10: 2,500 kg/ha, 2FWP10: 5,000 kg/ha, 3FWP10: 7,500 kg/ha, 4FWP10: 10,000 kg/ha), growth factors of FWP10, 2FWP10 and 3FWP10 treatment were not significantly different than those of chemical fertilizer treatment, and of 4FWP10 decreased. Correlation coefficient between NaCl supply by FWP10 application and growth factor was negative (P<0.01). These results indicated that FWP was used as another source of organic fertilizer, and the organic fertilizers blending with FWP inhibited a pakchoi growth by increase of salt content containing in the them or of salt supplying amount after their application.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Transportation and City Gas: Results of the Field Investigation (고품질화 바이오가스 이용 기술지침 마련을 위한 연구(I): 도시가스 및 수송용 - 현장조사 결과 중심으로)

  • Moon, HeeSung;Kwon, Junhwa;Park, Hoyeon;Jeon, Taewan;Shin, Sunkyung;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.1
    • /
    • pp.77-85
    • /
    • 2019
  • Biogasification is a technology that uses organic wastes to reproduce as environmental fuels containing methane gas. Biogasification has attracted worldwide attention because it can produce renewable-energy and stable land treatment with prohibit from landfilling and ocean dumping of organic waste. Biomethane is produced by refining biogas. It is injected into natural gas pipeline or used transportation fuel such as cars and buses. 90 bio-gasification facilities are operating in 2016, and methane gas production is very low due to it is limited to organic wastes such as food waste, animal manure, and sewage sludge. There are seven domestic biomethane manufacturing facilities, and the use of high value-added such as transport fuels and city-gas through upgrading biogas should be expanded. On the other hand, the rapid biogasification of organic wastes in domestic resulted in frequent breakdowns of facilities and low efficiency problems. Therefore, the problem is improving as technical guidance, design and operational technical guidance is developed and field experience is accumulated. However, while improvements in biogas production are being made, there is a problem with low utilization. In this study, the problems of biomethane manufacturing facilities were identified in order to optimize the production and utilization of biogas from organic waste resources. Also, in order to present the design and operation guideline of the gas pretreatment and the upgrading process, we will investigate precision monitoring, energy balance and economic analysis and solutions for on-site problems by facility.

Influence of Reduction Atmosphere and Temperature on the Separability and Distribution Behavior of Fe from FeTiO3 via Sulfurization (고온 황화반응에 의한 FeTiO3로부터 Fe의 분리성과 분배거동에 미치는 환원/황화 분위기 및 온도의 영향)

  • Shin, Seung-Hwan;Kim, Sun-Joong
    • Resources Recycling
    • /
    • v.28 no.3
    • /
    • pp.45-52
    • /
    • 2019
  • $TiO_2$ as a raw material for producing titanium can be produced by carbon reduction of natural ilmenite ores over 1823 K and acid leaching of the obtained titanium-rich slag. However, the conventional process can cause very high energy consumption and a large amount of leaching residues. In the present study, we proposed the sulfurization of $FeTiO_3$ with $Na_2SO_4$ at temperatures below 1573 K, which can separate Fe in $FeTiO_3$ as the FeS based sulfide phase and Ti as the $TiO_2-Na_2O$ based oxide phase. This study is a fundamental study for sulfurization of $FeTiO_3$ to investigate the influence of reducing atmosphere, reaction temperature and the sulfur/Fe ratio on the separability and distribution behaviors of of Fe, Ti, and Na between the oxide phase and the sulfurized phase. At 1573 K and carbon saturation condition, the Fe can be separated from $FeTiO_3$ as Fe-C-S metal and a part of FeS, and the concentration of Fe in oxide decreased to 4 mass% after sulfurization.

Composting and Fertilizing Characteristics of Poultry Manure Mixture with Compressed Expansion Rice Hull as Bulking Agent (수분조절제로서 팽화왕겨를 이용한 계분 발효 특성 및 시비 효과)

  • Kim, Young-Sun;Cho, Sung-Hyun;Lee, Hoon-Soo;Lee, Geung-Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.4
    • /
    • pp.5-13
    • /
    • 2020
  • This study was conducted to evaluate effects of compressed expansion rice hull (CERH) as bulking agent on physicochemical properties of composting poultry manure (PM) and of its fertilization on lettuce and pak choi growth. Treatments were designed as follows; sawdust treatment (90% PM + 10% sawdust; SP), peatmoss treatment (90% PM + 10% peatmoss; PP), and CERH treatments [PCR1 (90% PM + 10% CERH 1.3 mm) and PCR2 (90% PM + 10% CERH 3.0 mm)]. Physicochemical properties such as temperature, water content, pH, and total carbon of composted poultry piles for 31 days were unaffected by various bulking agents. However, total nitrogen content in compost pile was higher in PP and PCR1 than that of SP or PCR2. After composting for 31 days, content ranges of N, P2O5, and K2O in the composting PM piles were 19.1~19.7%, 47.6~51.6%, 2.76~3.65%, and 2.53~2.90%, respectively. As compared to SP treatment, dry weight of lettuce treated with PP and PCR1 increased by more than 10%, but only in PP for pak choi. These results indicated that CERH 1.3 could be used as bulking agents for composting PM on behalf of peatmoss or sawdust.

Physicochemical Properties of Mixtures with Mixed Organic Fertilizer and Various Organic Sources and Their Influences on Growth of Two Leaf Vegetables (유기성 자원과 혼합유기질비료 혼합물의 특성 및 처리 후 엽채류의 생육 효과)

  • Kim, Young-Sun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.1
    • /
    • pp.47-57
    • /
    • 2021
  • This study was conducted to evaluate the properties of mixtures of mixed organic fertilizer (MOF) and various organic sources such as livestock manure compost (LMC), dried compost of poultry manure (CPM), dried food waste powder (FWP) and amino acid by-product fertilizer (ABF) and their influences on growth of lettuce and Chinese cabbage. The content of N, P2O5 and K2O of mixture of MOF, LMC and FWP (MLF) was 3.6~3.9%, 2.1~2.2% and 1.3~1.4%, respectively. Lettuce dry weight of MLF3 treatment blending with MOF (60%), LMC (10%) and FWP (30%) was increased by about 29% than that of MOF. The content of N, P2O5 and K2O of mixture of MOF, CPM, FWP and ABF (MCFA) was 4.5~4.7%, 1.7~1.9% and 1.3~1.4%, respectively. Compared to MOF, growth factors of lettuce and Chinese cabbage in the MCFA treatments were not significantly deferent. These results indicated that MLFs and MCFAs, the mixtures of respectively organic sources and MOF, could be applied as orgnic fertilizer in the cultivation of lettuce and Chinese cabbage, and were expected that LMC and ABF might be used as another sources of organic fertilizer.

Growth Effects of Microbial Fertilizer Containing Bacillus amyloliquefaciens in Lettuce (Bacillus amyloliquefaciens 함유 비료 처리에 의한 상추의 생육 증대 효과)

  • Kim, Young-Sun;Cho, Sung-Hyun;Lee, Hoonsoo;Lee, Geung-Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.15-24
    • /
    • 2021
  • This study was conducted to evaluate effects of microbial fertilizer (MF) containing Bacillus amyloliquefaciens on the growth in the lettuce by treating MF without and with organic fertilizer (OF), or by its formulation types, and to investigate its application in the eco-friendly agriculture. B. amyloliquefaciens, active microbe of MF, had activities of amylase and protease. Applied only MF without OF, MF treatments were not significantly different with non-fertilizer (NF). As compared to control, dry weight of MOF2 treatment (2,500 kg OF/ha + 50 kg MF/ha) was increased by about 30%. As applied with wettable powder type (WP) and soluble powder type (SP) of MF, the dry weight of WP was increased by 43% than that of control, but SP not significantly different. In the comparison with two MF formulation, dry weight of WP was increased by about 37% than that of SP. These results indicated that an application of MF improved the growth of lettuce by prompting a mineralization of OF, and that the formulation type of MF was better WP than SP.

Experimental & computational study on fly ash and kaolin based synthetic lightweight aggregate

  • Ipek, Suleyman;Mermerdas, Kasim
    • Computers and Concrete
    • /
    • v.26 no.4
    • /
    • pp.327-342
    • /
    • 2020
  • The objective of this study is to manufacture environmentally-friendly synthetic lightweight aggregates that may be used in the structural lightweight concrete production. The cold-bonding pelletization process has been used in the agglomeration of the pozzolanic materials to achieve these synthetic lightweight aggregates. In this context, it was aimed to recycle the waste fly ash by employing it in the manufacturing process as the major cementitious component. According to the well-known facts reported in the literature, it is stated that the main disadvantage of the synthetic lightweight aggregate produced by applying the cold-bonding pelletization technique to the pozzolanic materials is that it has a lower strength in comparison with the natural aggregate. Therefore, in this study, the metakaolin made of high purity kaolin and calcined kaolin obtained from impure kaolin have been employed at particular contents in the synthetic lightweight aggregate manufacturing as a cementitious material to enhance the particle crushing strength. Additionally, to propose a curing condition for practical attempts, different curing conditions were designated and their influences on the characteristics of the synthetic lightweight aggregates were investigated. Three substantial features of the aggregates, specific gravity, water absorption capacity, and particle crushing strength, were measured at the end of 28-day adopted curing conditions. Observed that the incorporation of thermally treated kaolin significantly influenced the crushing strength and water absorption of the aggregates. The statistical evaluation indicated that the investigated properties of the synthetic lightweight aggregate were affected by the thermally treated kaolin content more than the kaoline type and curing regime. Utilizing the thermally treated kaolin in the synthetic aggregate manufacturing lead to a more than 40% increase in the crushing strength of the pellets in all curing regimes. Moreover, two numerical formulations having high estimation capacity have been developed to predict the crushing strength of such types of aggregates by using soft-computing techniques: gene expression programming and artificial neural networks. The R-squared values, indicating the estimation performance of the models, of approximately 0.97 and 0.98 were achieved for the numerical formulations generated by using gene expression programming and artificial neural networks techniques, respectively.