• Title/Summary/Keyword: Natural radionuclide

Search Result 52, Processing Time 0.022 seconds

Alpha-emitting Radioisotopes Production for Radioimmunotherapy (방사면역치료를 위한 알파 방출 방사성 동위원소 생산)

  • Chun, Kwon-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • This review discusses the production of alpha-particle-emitting radionuclides in radioimmunotherapy. Radioimmunotherapy labeled with alpha-particle is expected to be very useful for the treatment of monocellular cancer (e.g. leukemia) and micrometastasis at an early stage, residual tumor remained in tissues after chemotherapy and tumor resection, due to the high linear energy transfer (LET) and the short path length in biological tissue of alpha particle. Despite of the expected effectiveness of alpha-particle in radioimmunotherapy, its clinical research has not been activated by the several reasons, shortage of a suitable a-particle development and a reliable radionuclide production and supply system, appropriate antibody and chelator development. Among them, the establishment of radionuclide development and supply system is a key factor to make an alpha-immunotherapy more popular in clinical trial. Alpha-emitter can be produced by several methods, natural radionuclides, reactor irradiation, cyclotron irradiation, generator system and elution. Due to the sharply increasing demand of $^{213}Bi$, which is a most promising radionuclide in radioimmunotherapy and now has been produced with reactor, the cyclotron production system should be developed urgently to meet the demand.

Performance Assessment of Low- and Intermediate-Level Radioactive Waste Disposal Facility in Korea by Using Complementary Indicator: Case Study with Radionuclide Flux (보조지표를 활용한 중·저준위 처분시설 성능평가: 방사성 핵종 플럭스 사례연구)

  • Jung, Kang-Il;Jeong, Mi-Seon;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.1
    • /
    • pp.73-86
    • /
    • 2015
  • The use of complimentary indicators, other than radiation dose and risk, to assess the safety of radioactive waste disposal has been discussed in a number of publications for providing the reasonable assurance of disposal safety and convincing the public audience. In this study, the radionuclide flux was selected as performance indicator to appraise the performance of engineered barriers and natural barrier in the Wolsong low- and intermediate-level waste disposal facility. Radionuclide flux showing the retention capability by each compartment of the disposal system is independent of assumptions in biosphere model and exposure pathways. The scenario considered as the normal scenario of disposal facility has been divided into intact or degraded silo concrete conditions. In the intact silo concrete, the radionuclide flux has been assessed with respect to the radionuclide retardation performance of each engineered barrier. In the degraded silo concrete, the radionuclide flux has been explored based on the performance degradation of engineered barriers and the relative significance of natural barrier quantitatively. The results can be used to optimally design the near-surface disposal facility being planned as the second project phase. In the future, additional complimentary indicators will be employed for strengthening the safety case for improving the public acceptance of low- and intermediate-level waste disposal facility.

REVIEW AND COMPILATION OF DATA ON RADIONUCLIDE MIGRATION AND RETARDATION FOR THE PERFORMANCE ASSESSMENT OF A HLW REPOSITORY IN KOREA

  • Baik, Min-Hoon;Lee, Seung-Yeop;Lee, Jae-Kwang;Kim, Seung-Soo;Park, Chung-Kyun;Choi, Jong-Won
    • Nuclear Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.593-606
    • /
    • 2008
  • In this study, data on radionuclide migration and retardation processes in the engineered and natural barriers of High-Level Radioactive Waste (HLW) repository have been reviewed and compiled for use in the performance assessment of a HLW disposal system in Korea. The status of the database on radionuclide migration and retardation that is being developed in Korea is investigated and summarized in this study. The solubilities of major actinides such as D, Th, Am, Np, and Pu both in Korean bentonite porewater and in deep Korean groundwater are calculated by using the geochemical code PHREEQC (Ver. 2.0) based on the KAERI-TDB(Korea Atomic Energy Research Institute-Thermochemical Database), which is under development. Databases for the diffusion coefficients ($D^b_e$ values) and distribution coefficients ($K^b_d$ values) of some radionuclides in the compacted Korean Ca-bentonite are developed based upon domestic experimental results. Databases for the rock matrix diffusion coefficients ($D^r_e$ values) and distribution coefficients ($K^r_d$ values) of some radionuclides for Korean granite rock and deep groundwater are also developed based upon domestic experimental results. Finally, data related to colloids such as the characteristics of natural groundwater colloids and the pseudo-colloid formation constants ($K_{pc}$ values) are provided for the consideration of colloid effects in the performance assessment.

Distribution and characteristics of radioactivity$(^{232}Th,\;^{226}Ra,\;^{40}K,\;^{137}Cs\;and\;^{90}Sr)$ and radiation in Korea

  • Yun, Ju-Yong;Choi, Seok-Won;Kim, Chang-Kyu;Moon, Jong-Yi;Rho, Byung-Hwan
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.4
    • /
    • pp.167-174
    • /
    • 2005
  • The concentrations of natural and artificial radionuclides in soil and gamma ray dose rate in air at 233 locations in Korea have been determined. The national mean concentrations of $^{232}Th,\;^{226}Ra,\;^{40}K,\;^{137}Cs\;and\;^{90}Sr$ in soil were $60{\pm}31,\;33{\pm}14,\;673{\pm}238,\;35{\pm}9.3\;and\;5.0{\pm}3.4\;Bq\;kg^{-1}$, respectively. The mean gamma-ray dose rate at 1 m above the ground was $7918\;nGy\;h^{-1}$. $^{137}Cs$ concentration had highly significant correlation with organic matter content and cation exchange capacity. $^{90}Sr$ concentration had slightly coherent with pH. The results have been compared with other global radioactivity and radiation measurements.

Method for Evaluating Radionuclide Transport in Biosphere by Calculating Elapsed Transport Time (이동 경과 시간 계산을 이용한 생물권에서의 방사성 핵종 이동 평가 방법)

  • Ko, Nak-Youl;Ji, Sung-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2_spc
    • /
    • pp.305-315
    • /
    • 2020
  • For geological disposal of radioactive wastes, a method was proposed to evaluate the radionuclide transport in the biosphere by calculating the elapsed time of nuclide migration. The radionuclides were supposed to be introduced from a natural barrier and reached a large surface water body following a groundwater flow in a shallow subsurface. The biosphere was defined as a shallow subsurface environment that included aquifers on a host rock. Using the proposed method, a calculation algorithm was established, and a computer code that implemented the algorithm was developed. The developed code was verified by comparing the simulation results of the simple cases with the results of the analytical solution and a public program, which has been widely used to evaluate the radiation dose using the radionuclide transport near the surface. A case study was constructed using the previous research for radionuclide transport from the hypothetical geological disposal repository. In the case study, the code calculated the mass discharge rate of radionuclide to a stream in the biosphere. Because the previous research only demonstrated the transport of radionuclides from the hypothetical repository to the host rock, the developed code in the present study could help identify the total transport of radionuclide along the complete pathway.

International Joint Research for the Colloid Formation and Migration in Grimsel Test Site: Current Status and Perspectives

  • Sang-Ho Lee;Jin-Seok Kim;Bong-Ju Kim;Jae-Kwang Lee;Seung Yeop Lee;Jang-Soon Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.455-468
    • /
    • 2022
  • Colloid Formation and Migration (CFM) project is being carried out within the Grimsel Test Site (GTS) Phase Ⅵ. Since 2008, the Korea Atomic Energy Research Institute (KAERI) has joined CFM to investigate the behavior of colloid-facilitated radionuclide transport in a generic Underground Research Laboratory (URL). The CFM project includes a long-term in-situ test (LIT) and an in-rock bentonite erosion test (i-BET) to assess the in-situ colloid-facilitated radionuclide transport through the bentonite erosion in the natural flow field. In the LIT experiment, radionuclide-containing compacted bentonite was equipped with a triple-packer system and then positioned at the borehole in the shear zone. It was observed that colloid transport was limited owing to the low swelling pressure and low hydraulic conductivity. Therefore, a postmortem analysis is being conducted to estimate the partial migration and diffusion of radionuclides. The i-BET experiment, that focuses more on bentonite erosion, was newly designed to assess colloid formation in another flow field. The i-BET experiment started with the placement of compacted bentonite rings in the double-packer system, and the hydraulic parameters and bentonite erosion have been monitored since December 2018.

Spectroscopic Characterization of Aqueous and Colloidal Am(III)-CO3 Complexes for Monitoring Species Evolution

  • Hee-Kyung Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.371-382
    • /
    • 2022
  • Carbonates are inorganic ligands that are abundant in natural groundwater. They strongly influence radionuclide mobility by forming strong complexes, thereby increasing solubility and reducing soil absorption rates. We characterized the spectroscopic properties of Am(III)-carbonate species using UV-Vis absorption and time-resolved laser-induced fluorescence spectroscopy. The deconvoluted absorption spectra of aqueous Am(CO3)2- and Am(CO3)33- species were identified at red-shifted positions with lower molar absorption coefficients compared to the absorption spectrum of aqua Am3+. The luminescence spectrum of Am(CO3)33- was red-shifted from 688 nm for Am3+ to 695 nm with enhanced intensity and an extended lifetime. Colloidal Am(III)-carbonate compounds exhibited absorption at approximately 506 nm but had non-luminescent properties. Slow formation of colloidal particles was monitored based on the absorption spectral changes over the sample aging time. The experimental results showed that the solubility of Am(III) in carbonate solutions was higher than the predicted values from the thermodynamic constants in OECD-NEA reviews. These results emphasize the importance of kinetic parameters as well as thermodynamic constants to predict radionuclide migration. The identified spectroscopic properties of Am(III)-carbonate species enable monitoring time-dependent species evolution in addition to determining the thermodynamics of Am(III) in carbonate systems.

Multigrid Wavelet-Based Natural Pixel Method for Image Reconstruction in Emission Computed Tomography

  • Chang je park;Park, Jeong hwan;Cho, Nam-Zin
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.705-710
    • /
    • 1998
  • We describe a multigrid wavelet-based natural pixel (WNP) method for image reconstruction in emission computed tomography (ECT). The ECT is used to identify the tagged radioactive material's position in the body for detection of abnormal tissue such as tumor or cancer, as in SPECT and PET. With ECT methodology in parallel beam mode, we formulate a matrix-based reconstruction method for radionuclide sources in the human body. The resulting matrix for a practical problem is very large and nearly singular. To overcome this ill-conditioning, wavelet transform is considered in this study. Wavelets have inherent de-noising and multiscale resolution properties. Therefore, the multigrid wavelet-based natural pixel (WNP) method is very efficient to reconstruct image from projection data that is noisy and incomplete. We test this multigrid wavelet natural pixel (WNP) reconstruction method with the MCNP generated projection data for diagnosis of the simulated cancerous tumor.

  • PDF

Accumulation of Natural and Artificial Radionuclides in Marine Products around the Korean Peninsula: Current Studies and Future Direction (국내산 수산물 내 자연 및 인공방사능 축적 연구 현황 및 향후 연구 방향)

  • Lee, Huisu;Kim, Intae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.618-629
    • /
    • 2021
  • The Fukushima nuclear power plant (NPP) accident caused by the East Japan Earthquake in 2011 and the recent increase in the frequency of earthquakes in Korea have caused safety concerns regarding radionuclide exposure. In addition, the Tokyo Electric Power Company (TEPCO) in Japan recently decided to release radionuclide-contaminated water from Fukushima's NPP into the Pacific Ocean, raising public concerns that the possibility of radionuclide contamination through both domestic- and foreign fishery products is increasing. Although many studies have been conducted on the input of artificial radionuclides into the Pacific after the Fukushima NPP accident, studies on the distribution and accumulation of artificial radionuclides in marine products from East Asia are lacking. Therefore, in this study, we attempted to explore recent research on the distribution of artificial radionuclides (e.g., 137Cs, 239+240Pu, 90Sr, and etc.) in marine products from Korean seas after the Fukushima NPP accident. In addition, we also discuss future research directions as it is necessary to prepare for likely radiation accidents in the future around Korea associated with the new nuclear facilities planned by 2030 in China and owing to the discharge of radionuclide-contaminated water from the Fukushima NPP.

Roles and Importance of Microbes in the Radioactive Waste Disposal (방사성폐기물 처분에서 미생물의 역할과 중요성)

  • Baik, Min-Hoon;Lee, Seung-Yeop;Roh, Yeol
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.1
    • /
    • pp.63-72
    • /
    • 2009
  • Recently the importance and interest for the microbes has been increased because several important results for the effects of microbes on the radioactive waste disposal have been published continuously. In this study, research status and major results on the various roles and effects of microbes in the radioactive waste disposal have been investigated. We investigated and summarized the roles and major results of microbes in a multi-barrier system consisting of an engineered barrier and a natural barrier which is considered in radioactive waste disposal systems. For the engineered barrier, we discussed about the effects of microbes on the corrosion of a waste container and investigated the survival possibility and roles of microbes in a compacted bentonite buffer. For the natural barrier, the roles of microbes present in groundwaters and rocks were discussed and summarized with major results from natural analogue studies. Furthermore, we investigated and summarized the roles and various interactions processes of microbes and their effects on the radionuclide migration and retardation including recent research status. Therefore, it is expected that the effects and roles of microbes on the radioactive waste disposal can be rigorously evaluated if further researches are carried out for a long-term behavior of the disposal system in the deep geological environments and for the effects of microbes on the radionuclide migration through geological media.

  • PDF