• Title/Summary/Keyword: Natural medicines

Search Result 376, Processing Time 0.023 seconds

The Application of DNA Chip Technology to Identify Herbal Medicines: an Example from the Family Umbelliferae

  • Kim, Pil-Ho;Park, Jisoo;Kim, Yeong Shik;Suh, Youngbae
    • Natural Product Sciences
    • /
    • v.21 no.3
    • /
    • pp.185-191
    • /
    • 2015
  • Comparative molecular analysis has been frequently adopted for the authentication of herbal medicines as well as the identification of botanical origins. Roots and rhizomes of the family Umbelliferae have been used as traditional herbal medicines to relieve various symptoms such as inflammation, neuralgia and paralysis in countries of East Asia. Since most herbal medicines of the Umbelliferae roots or rhizomes are generally supplied in the form of dried slices, morphological examination does not often provide sufficient evidence to identify the botanical origin. Using species-specific probes developed by the comparative analysis of nrDNA ITS sequences, a DNA chip was developed to identify herbal medicines for 13 species in the Umbelliferae. The developed DNA Chip proves its potential as a rapid, sensitive and effective tool for authenticating herbal medicines in future.

A Coumarin-based Fluorescent Sensor for Selective Detection of Copper (II)

  • Wang, Jian-Hong;Guo, Xin-Ling;Hou, Xu-Feng;Zhao, Hui-Jun;Luo, Zhao-Yang;Zhao, Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2400-2402
    • /
    • 2014
  • Cu (II) detection is of great importance owing to its significant function in various biological processes. In this report, we developed a novel coumarin-based chemosensor bearing the salicylaldimine unit (2) for $Cu^{2+}$ selective detection. The results from fluorescence spectra demonstrated that the sensor could selectively recognize $Cu^{2+}$ over other metal cations and the detection limit is as low as $0.2{\mu}M$. Moreover, the confocal fluorescence imaging in HepG2 cells illustrated its potential for biological applications.

Ginsengenin derivatives synthesized from 20(R)-panaxotriol: Synthesis, characterization, and antitumor activity targeting HIF-1 pathway

  • Guo, Hong-Yan;Xing, Yue;Sun, Yu-Qiao;Liu, Can;Xu, Qian;Shang, Fan-Fan;Zhang, Run-Hui;Jin, Xue-Jun;Chen, Fener;Lee, Jung Joon;Kang, Dongzhou;Shen, Qing-Kun;Quan, Zhe-Shan
    • Journal of Ginseng Research
    • /
    • v.46 no.6
    • /
    • pp.738-749
    • /
    • 2022
  • Background: Ginseng possesses antitumor effects, and ginsenosides are considered to be one of its main active chemical components. Ginsenosides can further be hydrolyzed to generate secondary saponins, and 20(R)-panaxotriol is an important sapogenin of ginsenosides. We aimed to synthesize a new ginsengenin derivative from 20(R)-panaxotriol and investigate its antitumor activity in vivo and in vitro. Methods: Here, 20(R)-panaxotriol was selected as a precursor and was modified into its derivatives. The new products were characterized by 1H-NMR, 13C-NMR and HR-MS and evaluated by molecular docking, MTT, luciferase reporter assay, western blotting, immunofluorescent staining, colony formation assay, EdU labeling and immunofluorescence, apoptosis assay, cells migration assay, transwell assay and in vivo antitumor activity assay. Results: The derivative with the best antitumor activity was identified as 6,12-dihydroxy-4,4,8,10,14-pentamethyl-17-(2,6,6-trimethyltetrahydro-2H-pyran-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl(tert-butoxycarbonyl)glycinate (A11). The focus of this research was on the antitumor activity of the derivatives. The efficacy of the derivative A11 (IC50 < 0.3 µM) was more than 100 times higher than that of 20(R)- panaxotriol (IC50 > 30 µM). In addition, A11 inhibited the protein expression and nuclear accumulation of the hypoxia-inducible factor HIF-1α in HeLa cells under hypoxic conditions in a dose-dependent manner. Moreover, A11 dose-dependently inhibited the proliferation, migration, and invasion of HeLa cells, while promoting their apoptosis. Notably, the inhibition by A11 was more significant than that by 20(R)-panaxotriol (p < 0.01) in vivo. Conclusion: To our knowledge, this is the first study to report the production of derivative A11 from 20(R)-panaxotriol and its superior antitumor activity compared to its precursor. Moreover, derivative A11 can be used to further study and develop novel antitumor drugs.

Emodin-Provoked Oxidative Stress Induces Apoptosis in Human Colon Cancer HCT116 Cells through a p53-Mitochondrial Apoptotic Pathway

  • Xie, Mei-Juan;Ma, Yi-Hua;Miao, Lin;Wang, Yan;Wang, Hai-Zhen;Xing, Ying-Ying;Xi, Tao;Lu, Yuan-Yuan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5201-5205
    • /
    • 2014
  • Emodin, a natural anthraquinone isolated from the traditional Chinese medicine Radix rhizoma Rhei, can induce apoptosis in many kinds of cancer cells. This study demonstrated that emodin induces apoptosis in human colon cancer HCT116 cells by provoking oxidative stress, which subsequently triggers a p53-mitochondrial apoptotic pathway. Emodin induced mitochondrial transmembrane potential loss, increase in Bax and decrease in Bcl-2 expression and mitochondrial translocation and release of cytochrome c to cytosol in HCT116 cells. In response to emodin-treatment, ROS increased rapidly, and subsequently p53 was overexpressed. Pretreatment with the antioxidant NAC diminished apoptosis and p53 overexpression induced by emodin. Transfecting p53 siRNA also attenuated apoptosis induced by emodin, Bax expression and mitochondrial translocation being reduced compared to treatment with emodin alone. Taken together, these results indicate that ROS is a trigger of emodin-induced apoptosis in HCT116 cells, and p53 expression increases under oxidative stress, leading to Bax-mediated mitochondrial apoptosis.

Ginsenoside Rb1 exerts neuroprotective effects through regulation of Lactobacillus helveticus abundance and GABAA receptor expression

  • Chen, Huimin;Shen, Jiajia;Li, Haofeng;Zheng, Xiao;Kang, Dian;Xu, Yangfan;Chen, Chong;Guo, Huimin;Xie, Lin;Wang, Guangji;Liang, Yan
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.86-95
    • /
    • 2020
  • Background: Ginsenoside Rb1 (Rb1), one of the most abundant protopanaxadiol-type ginsenosides, exerts excellent neuroprotective effects even though it has low intracephalic exposure. Purpose: The present study aimed to elucidate the apparent contradiction between the pharmacokinetics and pharmacodynamics of Rb1 by studying the mechanisms underlying neuroprotective effects of Rb1 based on regulation of microflora. Methods: A pseudo germ-free (PGF) rat model was established, and neuroprotective effects of Rb1 were compared between conventional and PGF rats. The relative abundances of common probiotics were quantified to reveal the authentic probiotics that dominate in the neuroprotection of Rb1. The expressions of the gamma-aminobutyric acid (GABA) receptors, including GABAA receptors (α2, β2, and γ2) and GABAB receptors (1b and 2), in the normal, ischemia/reperfusion (I/R), and I/R+Rb1 rat hippocampus and striatum were assessed to reveal the neuroprotective mechanism of Rb1. Results: The results showed that microbiota plays a key role in neuroprotection of Rb1. The relative abundance of Lactobacillus helveticus (Lac.H) increased 15.26 fold after pretreatment with Rb1. I/R surgery induced effects on infarct size, neurological deficit score, and proinflammatory cytokines (IL-1β, IL-6, and TNF-α) were prevented by colonizing the rat gastrointestinal tract with Lac.H (1 × 109 CFU) by gavage 15 d before I/R surgery. Both Rb1 and Lac.H upregulated expression of GABA receptors in I/R rats. Coadministration of a GABAA receptor antagonist significantly attenuated neuroprotective effects of Rb1 and Lac.H. Conclusion: In sum, Rb1 exerts neuroprotective effects by regulating Lac.H and GABA receptors rather than through direct distribution to the target sites.

Ginsenoside Rh2 reduces depression in offspring of mice with maternal toxoplasma infection during pregnancy by inhibiting microglial activation via the HMGB1/TLR4/NF-κB signaling pathway

  • Xu, Xiang;Lu, Yu-Nan;Cheng, Jia-Hui;Lan, Hui-Wen;Lu, Jing-Mei;Jin, Guang-Nan;Xu, Guang-Hua;Jin, Cheng-Hua;Ma, Juan;Piao, Hu-Nan;Jin, Xuejun;Piao, Lian-Xun
    • Journal of Ginseng Research
    • /
    • v.46 no.1
    • /
    • pp.62-70
    • /
    • 2022
  • Background: Maternal Toxoplasma gondii (T. gondii) infection during pregnancy has been associated with various mental illnesses in the offspring. Ginsenoside Rh2 (GRh2) is a major bioactive compound obtained from ginseng that has an anti-T. gondii effect and attenuates microglial activation through toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling pathway. GRh2 also alleviated tumor-associated or lipopolysaccharide-induced depression. However, the effects and potential mechanisms of GRh2 on depression-like behavior in mouse offspring caused by maternal T. gondii infection during pregnancy have not been investigated. Methods: We examined GRh2 effects on the depression-like behavior in mouse offspring, caused by maternal T. gondii infection during pregnancy, by measuring depression-like behaviors and assaying parameters at the neuronal and molecular level. Results: We showed that GRh2 significantly improved behavioral measures: sucrose consumption, forced swim time and tail suspended immobility time of their offspring. These corresponded with increased tissue concentrations of 5-hydroxytryptamine and dopamine, and attenuated indoleamine 2,3-dioxygenase or enhanced tyrosine hydroxylase expression in the prefrontal cortex. GRh2 ameliorated neuronal damage in the prefrontal cortex. Molecular docking results revealed that GRh2 binds strongly to both TLR4 and high mobility group box 1 (HMGB1). Conclusion: This study demonstrated that GRh2 ameliorated the depression-like behavior in mouse offspring of maternal T. gondii infection during pregnancy by attenuating the excessive activation of microglia and neuroinflammation through the HMGB1/TLR4/NF-κB signaling pathway. It suggests that GRh2 could be considered a potential therapy in preventing and treating psychiatric disorders in the offspring mice of mothers with prenatal exposure to T. gondii infection.

Application of Metabolomics to Quality Control of Natural Product Derived Medicines

  • Lee, Kyung-Min;Jeon, Jun-Yeong;Lee, Byeong-Ju;Lee, Hwanhui;Choi, Hyung-Kyoon
    • Biomolecules & Therapeutics
    • /
    • v.25 no.6
    • /
    • pp.559-568
    • /
    • 2017
  • Metabolomics has been used as a powerful tool for the analysis and quality assessment of the natural product (NP)-derived medicines. It is increasingly being used in the quality control and standardization of NP-derived medicines because they are composed of hundreds of natural compounds. The most common techniques that are used in metabolomics consist of NMR, GC-MS, and LC-MS in combination with multivariate statistical analyses including principal components analysis (PCA) and partial least squares-discriminant analysis (PLS-DA). Currently, the quality control of the NP-derived medicines is usually conducted using HPLC and is specified by one or two indicators. To create a superior quality control framework and avoid adulterated drugs, it is necessary to be able to determine and establish standards based on multiple ingredients using metabolic profiling and fingerprinting. Therefore, the application of various analytical tools in the quality control of NP-derived medicines forms the major part of this review. $Veregen^{(R)}$ (Medigene AG, Planegg/Martinsried, Germany), which is the first botanical prescription drug approved by US Food and Drug Administration, is reviewed as an example that will hopefully provide future directions and perspectives on metabolomics technologies available for the quality control of NP-derived medicines.

Change in composition of gut microbiota by exposure of natural medicines including Glycyrrhizae Radix in mice

  • Jeon, Yong-Deok;Song, Young-Jae;Jin, Jong-Sik
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.126-126
    • /
    • 2018
  • Many of researches have revealed that human intestinal microbiota is related to health. Several diseases like obesity, diabetes, and hypertension are affected by the microbiota directly and indirectly. So, interventions with food and drug have been tried to change a composition of the microbiota to better condition. However, few natural medicines have elucidated to date. To understand an influence on microbiota by plant materials including Glycyrrhizae Radix, the extract of medicines were administered to mice and the feces were collected before and after the administration. The feces were analyzed by terminal restriction fragment length polymorphism (T-RFLP). The changes in composition of mice gut microbiota were detected and analyzed. The data could be utilized to further study about biological activities of the plant medicines.

  • PDF