DOI QR코드

DOI QR Code

Application of Metabolomics to Quality Control of Natural Product Derived Medicines

  • Received : 2016.11.03
  • Accepted : 2017.03.30
  • Published : 2017.11.01

Abstract

Metabolomics has been used as a powerful tool for the analysis and quality assessment of the natural product (NP)-derived medicines. It is increasingly being used in the quality control and standardization of NP-derived medicines because they are composed of hundreds of natural compounds. The most common techniques that are used in metabolomics consist of NMR, GC-MS, and LC-MS in combination with multivariate statistical analyses including principal components analysis (PCA) and partial least squares-discriminant analysis (PLS-DA). Currently, the quality control of the NP-derived medicines is usually conducted using HPLC and is specified by one or two indicators. To create a superior quality control framework and avoid adulterated drugs, it is necessary to be able to determine and establish standards based on multiple ingredients using metabolic profiling and fingerprinting. Therefore, the application of various analytical tools in the quality control of NP-derived medicines forms the major part of this review. $Veregen^{(R)}$ (Medigene AG, Planegg/Martinsried, Germany), which is the first botanical prescription drug approved by US Food and Drug Administration, is reviewed as an example that will hopefully provide future directions and perspectives on metabolomics technologies available for the quality control of NP-derived medicines.

Keywords

References

  1. Abdi, H. (2003) Partial least square regression (PLS regression). In Encyclopedia for Research Methods for the Social Sciences (N. Salkind, Ed.), pp. 792-795. Sage Publications, Inc., USA.
  2. Avula, B., Joshi, V. C., Weerasooriya, A. and Khan, I. A. (2005) Liquid chromatography for separation and quantitative determination of adrenergic amines and flavonoids from Poncirus trifoliatus Raf. fruits at different stages of growth. Chromatographia 62, 379-383. https://doi.org/10.1365/s10337-005-0639-z
  3. Babu, P. V., Sabitha, K. E. and Shyamaladevi, C. S. (2006) Therapeutic effect of green tea extract on oxidative stress in aorta and heart of streptozotocin diabetic rats. Chem. Biol. Interact. 162, 114-120. https://doi.org/10.1016/j.cbi.2006.04.009
  4. Bochořakova, H., Paulova, H., Slanina, J., Musil, P. and Taborska, E. (2003) Main flavonoids in the root of Scutellaria baicalensis cultivated in Europe and their comparative antiradical properties. Phytother. Res. 17, 640-644. https://doi.org/10.1002/ptr.1216
  5. Chen, S. T., Dou, J., Temple, R., Agarwal, R., Wu, K. M. and Walker, S. (2008) New therapies from old medicines. Nat. Biotechnol. 26, 1077-1083. https://doi.org/10.1038/nbt1008-1077
  6. Choi, Y. H., Choi, H. K., Hazekamp, A., Bermejo, P., Schilder, Y., Erkelens, C. and Verpoorte, R. (2003) Quantitative analysis of bilobalide and ginkgolides from Ginkgo biloba leaves and Ginkgo products using $^1H$-NMR. Chem. Pharm. Bull. 51, 158-161. https://doi.org/10.1248/cpb.51.158
  7. Cooper, R., Morre, D. J. and Morré, D. M. (2005) Medicinal benefits of green tea: part II. Review of anticancer properties. J. Altern. Complement. Med. 11, 639-652. https://doi.org/10.1089/acm.2005.11.639
  8. Court, W. E. (2000) Ginseng: The Genus Panax (R. Hardman, Ed.), pp. 205-220. Taylor & Francis e-Library, The Netherlands.
  9. Cui, L. and Su, X. Z. (2009) Discovery, mechanisms of action and combination therapy of artemisinin. Expert Rev. Anti Infect. Ther. 7, 999-1013. https://doi.org/10.1586/eri.09.68
  10. Ding, Y., Wu, E., Chen, J., Nguyen, H. T., Do, T. H., Park, K. L., Ba, K. H., Kim, H. Y. and Kang, J. S. (2009) Quality evaluation of moutan cortex radicis using multiple component analysis by high performance liquid chromatography. Bull. Korean Chem. Soc. 30, 2240-2244. https://doi.org/10.5012/bkcs.2009.30.10.2240
  11. Dunn, W. B. and Ellis, D. I. (2005) Metabolomics: current analytical platforms and methodologies. Trends Analyt. Chem. 24, 285-294. https://doi.org/10.1016/j.trac.2004.11.021
  12. Eriksson, L., Johansson, E., Kettaneh-Wold, N., Trygg, J., Wikstrom, C. and Wold, S. (2006) Multi and Megavariate Data Analysis: Part I: Basic Principles and Applications, pp. 39-101. Umetrics AB, Sweden.
  13. Farag, M. A., Porzel, A. and Wessjohann, L. A. (2012) Comparative metabolite profiling and fingerprinting of medicinal licorice roots using a multiplex approach of GC-MS, LC-MS and 1D NMR techniques. Phytochemistry 76, 60-72. https://doi.org/10.1016/j.phytochem.2011.12.010
  14. Farag, M. A. and Wessjohann, L. A. (2012) Metabolome classification of commercial Hypericum perforatum (St. John's Wort) preparations via UPLC-qTOF-MS and chemometrics. Planta Med. 78, 488-496. https://doi.org/10.1055/s-0031-1298170
  15. Fraser, K., Harrison, S. J., Lane, G. A., Otter, D. E., Hemar, Y., Quek, S. Y. and Rasmussen, S. (2012) Non-targeted analysis of tea by hydrophilic interaction liquid chromatography and high resolution mass spectrometry. Food Chem. 134, 1616-1623. https://doi.org/10.1016/j.foodchem.2012.03.045
  16. Fu, H. Y., Huang, D. C., Yang, T. M., She, Y. B. and Zhang, H. (2013) Rapid recognition of Chinese herbal pieces of Areca catechu by different concocted processes using Fourier transform mid-infrared and near-infrared spectroscopy combined with partial least-squares discriminant analysis. Chinese Chem. Lett. 24, 639-642. https://doi.org/10.1016/j.cclet.2013.04.019
  17. Ghiulai, V. M., Socaciu, C., Jianu, I., Ranga, F. and Fetea, F. (2006) Identification and quantitative evaluation of amygdalin from apricot, plum and peach oils and kernels. Bulletin UASVM Agriculture 62, 246-253.
  18. Gromski, P. S., Muhamadali, H., Ellis, D. I., Xu, Y., Correa, E., Turner, M. L. and Goodacre, R. (2015) A tutorial review: Metabolomics and partial least squares-discriminant analysis--a marriage of convenience or a shotgun wedding. Anal. Chim. Acta 879, 10-23. https://doi.org/10.1016/j.aca.2015.02.012
  19. Gurley, B. J., Wang, P. and Gardner, S. F. (1998) Ephedrine-type alkaloid content of nutritional supplements containing Ephedra sinica (Ma-huang) as determined by high performance liquid chromatography. J. Pharm. Sci. 87, 1547-1553. https://doi.org/10.1021/js9801844
  20. Hasada, K., Yoshida, T., Yamazaki, T., Sugimoto, N., Nishimura, T., Nagatsu, A. and Mizukami, H. (2011) Application of $^1H$-NMR spectroscopy to validation of berberine alkaloid reagents and to chemical evaluation of Coptidis rhizoma. J. Nat. Med. 65, 262-267. https://doi.org/10.1007/s11418-010-0490-x
  21. Jacquemond-Collet, I., Bessière, J. M., Hannedouche, S., Bertrand, C., Fouraste, I. and Moulis, C. (2001) Identification of the alkaloids of Galipea officinalis by gas chromatography-mass spectrometry. Phytochem. Anal. 12, 312-329. https://doi.org/10.1002/pca.594
  22. Jantarat, C., Sirathanarun, P., Songsrm, W., Srinornate, W. and Daengprom, S. (2013) A simple and rapid HPLC technique for determination of arecoline in areca nut (Areca catechu L.) extract. Walailak J. Sci. & Tech. 10, 57-66.
  23. Jensen, A. G., Ndjoko, K., Wolfender, J. L., Hostettmann, K., Camponovo, F. and Soldati, F. (2002) Liquid chromatography-atmospheric pressure chemical ionisation/mass spectrometry: a rapid and selective method for the quantitative determination of ginkgolides and bilobalide in ginkgo leaf extracts and phytopharmaceuticals. Phytochem. Anal. 13, 31-38. https://doi.org/10.1002/pca.614
  24. Jumtee, K., Bamba, T. and Fukusaki, E. (2009) Fast GC-FID based metabolic fingerprinting of Japanese green tea leaf for its quality ranking prediction. J. Sep. Sci. 32, 2296-2304. https://doi.org/10.1002/jssc.200900096
  25. Kang, J., Choi, M. Y., Kang, S., Kwon, H. N., Wen, H., Lee, C. H., Park, S., Wiklund, S., Kim, H. J., Kwon, S. W. and Park, S. (2008a) Application of a $^1H$ nuclear magnetic resonance (NMR) metabolomics approach combined with orthogonal projections to latent structure-discriminant analysis as an efficient tool for discriminating between Korean and Chinese herbal medicines. J. Agric. Food Chem. 56, 11589-11595. https://doi.org/10.1021/jf802088a
  26. Kang, J., Lee, S., Kang, S., Kwon, H. N., Park, J. H., Kwon, S. W. and Park, S. (2008b) NMR-based metabolomics approach for the differentiation of ginseng (Panax ginseng) roots from different origins. Arch. Pharm. Res. 31, 330-336. https://doi.org/10.1007/s12272-001-1160-2
  27. Kataoka, M., Tokuyama, E., Miyanaga, Y. and Uchida, T. (2008) The taste sensory evaluation of medicinal plants and Chinese medicines. Int. J. Pharm. 351, 36-44. https://doi.org/10.1016/j.ijpharm.2007.09.017
  28. Kim, H. K., Choi, Y. H., Erkelens, C., Lefeber, A. W. and Verpoorte, R. (2005) Metabolic fingerprinting of Ephedra species using $^1H$-NMR spectroscopy and principal component analysis. Chem. Pharm. Bull. 53, 105-109. https://doi.org/10.1248/cpb.53.105
  29. Kim, H. K., Choi, Y. H. and Verpoorte, R. (2010) NMR-based metabolomic analysis of plants. Nat. Protoc. 5, 536-549. https://doi.org/10.1038/nprot.2009.237
  30. Kim, S. H., Shin, Y. S. and Choi, H. K. (2016) NanoESI-MS-based lipidomics to discriminate between cultivars, cultivation ages, and parts of Panax ginseng. Anal. Bioanal. Chem. 408, 2109-2121. https://doi.org/10.1007/s00216-016-9314-5
  31. Kim, T. H., Jang, S., Lee, A. R., Lee, A. Y., Choi, G. and Kim, H. K. (2014) Optimization of extraction conditions for swertiamarin in Swertia japonica makino. Korea J. Herbol. 29, 13-18.
  32. Kunle, O. F., Egharevba, H. O. and Ahmadu, P. O. (2012) Standardization of herbal medicines - A review. Int. J. Biodivers. Conserv. 4, 101-112.
  33. Kwon, Y. K., Ahn, M. S., Park, J. S., Liu, J. R., In, D. S., Min, B. W. and Kim, S. W. (2014) Discrimination of cultivation ages and cultivars of ginseng leaves using Fourier transform infrared spectroscopy combined with multivariate analysis. J. Ginseng Res. 38, 52-58. https://doi.org/10.1016/j.jgr.2013.11.006
  34. Landis-Piwowar, K. R., Huo, C., Chen, D. I., Milacic, V., Shi, G., Chan, T. H. and Dou, Q. P. (2007) A novel prodrug of the green tea polyphenol (-)-epigallocatechin-3-gallate as a potential anticancer agent. Cancer Res. 67, 4303-4310. https://doi.org/10.1158/0008-5472.CAN-06-4699
  35. Le Gall, G., Colquhoun, I. J. and Defernez, M. (2004) Metabolite profiling using (1)H NMR spectroscopy for quality assessment of green tea, Camellia sinensis (L.). J. Agric. Food Chem. 52, 692-700. https://doi.org/10.1021/jf034828r
  36. Lee, J., Jung, Y., Shin, J. H., Kim, H. K., Moon, B. C., Ryu, D. H. and Hwang, G. S. (2014) Secondary metabolite profiling of Curcuma species grown at different locations using GC/TOF and UPLC/Q-TOF MS. Molecules 19, 9535-9551. https://doi.org/10.3390/molecules19079535
  37. Li, Y., Hu, Z. and He, L. (2007) An approach to develop binary chromatographic fingerprints of the total alkaloids from Caulophyllum robustum by high performance liquid chromatography/diode array detector and gas chromatography/mass spectrometry. J. Pharm. Biomed. Anal. 43, 1667-1672. https://doi.org/10.1016/j.jpba.2006.12.028
  38. Lin, J. K. and Lin-Shiau, S. Y. (2006) Mechanisms of hypolipidemic and anti-obesity effects of tea and tea polyphenols. Mol. Nutr. Food Res. 50, 211-217. https://doi.org/10.1002/mnfr.200500138
  39. Lin, Y. L., Cheng, C. Y., Lin, Y. P., Lau, Y. W., Juan, I. M. and Lin, J. K. (1998) Hypolipidemic effect of green tea leaves through induction of antioxidant and phase II enzymes including superoxide dismutase, catalase, and glutathione S-transferase in rats. J. Agric. Food Chem. 46, 1893-1899. https://doi.org/10.1021/jf970963q
  40. Lu, J., Xiang, B., Liu, H., Xiang, S., Xie, S. and Deng, H. (2008) Application of two-dimensional near-infrared correlation spectroscopy to the discrimination of Chinese herbal medicine of different geographic regions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 69, 580-586. https://doi.org/10.1016/j.saa.2007.05.006
  41. Lv, W. F., Ding, M. Y. and Zheng, R. (2005) Isolation and quantitation of amygdalin in Apricot-kernel and Prunus Tomentosa Thunb. by HPLC with solid-phase extraction. J. Chromatogr. Sci. 43, 383-387. https://doi.org/10.1093/chromsci/43.7.383
  42. Mengs, U., Pohl, T. and Mitchell, T. (2012) $Legalon^{(R)}$ SIL: the antidote of choice in patients with acute hepatotoxicity from amatoxin poisoning. Curr. Pharm. Biotechnol. 13, 1964-1970. https://doi.org/10.2174/138920112802273353
  43. MIT Technology Review (2005) 10 Breakthrough Technology 2015. Available from: http://www2.technologyreview.com/news/404001/10-emerging-technologies.
  44. Montoro, P., Maldini, M., Russo, M., Postorino, S., Piacente, S. and Pizza, C. (2011) Metabolic profiling of roots of liquorice (Glycyrrhiza glabra) from different geographical areas by ESI/MS/MS and determination of major metabolites by LC-ESI/MS and LC-ESI/MS/MS. J Pharm. Biomed. Anal. 54, 535-544. https://doi.org/10.1016/j.jpba.2010.10.004
  45. Nugroho, A., Park, M. G., Jin, S. E., Choi, J. S. and Park, H. J. (2009) Quantitative analsysis of flavanone glycosides and peroxynitrite scavenging effect of the five oriental medicinal drugs (Aurantii nobilis Pericarpium, Citrii unshiu Pericarpium, Citrii unshiu Semen, Aurantii Fructus, Poncirii Fructus). Korean J. Pharmacogn. 40, 370-375.
  46. Oh, M. J., Lee, K. S., Son, H. Y. and Kim, S. Y. (1990) Antioxidative components of Pueraria root. Korean J. Food Sci. Technol. 22, 793-798.
  47. Okada, T., Nakamura, Y., Kanaya, S., Takano, A., Malla, K. J., Nakane, T., Kitayama, M. and Sekita, S. (2009) Metabolome analysis of Ephedra plants with different contents of ephedrine alkaloids by using UPLC-Q-TOF-MS. Planta Med., 75, 1356-1362. https://doi.org/10.1055/s-0029-1185577
  48. Perez-Enciso, M. and Tenenhaus, M. (2003) Prediction of clinical outcome with microarray data: a partial least squares discriminant analysis (PLS-DA) approach. Hum. Genet. 112, 581-592.
  49. Pongsuwan, W., Bamba, T., Harada, K., Yonetani, T., Kobayashi, A. and Fukusaki, E. (2008a) High-throughput technique for comprehensive analysis of Japanese green tea quality assessment using ultra-performance liquid chromatography with time-of-flight mass spectrometry (UPLC/TOF MS). J. Agric. Food Chem. 56, 10705-10708. https://doi.org/10.1021/jf8018003
  50. Pongsuwan, W., Bamba, T., Yonetani, T., Kobayashi, A. and Fukusaki, E. (2008b) Quality prediction of Japanese green tea using pyrolyzer coupled GC/MS based metabolic fingerprinting. J. Agric. Food Chem. 56, 744-750. https://doi.org/10.1021/jf072791v
  51. Pongsuwan, W., Fukusaki, E., Bamba, T., Yonetani, T., Yamahara, T. and Kobayashi, A. (2007) Prediction of Japanese green tea ranking by gas chromatography/mass spectrometry-based hydrophilic metabolite fingerprinting. J. Agric. Food Chem. 55, 231-236. https://doi.org/10.1021/jf062330u
  52. Sakamoto, Y., Nakagawa, K., Kawana, S., Lingga, N., Lai Chin, H. L. and Miyagawa, H. (2010) GC/MS Technical Report (No. 1). Available from: https://www.shimadzu.it/sites/default/files/Profiling_of_Japanese_Green_Tea_Metabolites_by_GC-MS.pdf/.
  53. Samukawa, K., Yamashita, H., Matsuda, H. and Kubo, M. (1995) Simultaneous analysis of ginsenosides of various ginseng radix by HPLC. Yakugaku Zasshi 43, 137-141.
  54. Scannell, J. W., Blanckley, A., Boldon, H. and Warrington, B. (2012) Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug Discov. 11, 191-200. https://doi.org/10.1038/nrd3681
  55. Selvam, A. B. D. (2008) Inventory of vegetable crude drug samples housed in botanical survey of India, Howrah. Pharmacogn. Rev. 2, 61-94.
  56. Shin, Y. G., Cho, K. H., Kim, J. M., Park, M. K. and Park, J. H. (1999) Determination of betaine in Lycium chinense fruits by liquid chromatography-electrospray ionization mass spectrometry. J. Chromatogr. A 857, 331-335. https://doi.org/10.1016/S0021-9673(99)00720-7
  57. Song, S. Y., Lee, Y. K. and Kim, I. J. (2016) Sugar and acid content of Citrus prediction modeling using FT-IR fingerprinting in combination with multivariate statistical analysis. Food Chem. 190, 1027-1032. https://doi.org/10.1016/j.foodchem.2015.06.068
  58. Suzuki, H. (1984) Standard compounds for quantitative determination of principles of crude drugs-1-Paeoniflorin, a major principle of peony root. Jap. J. Pharmacogn. 38, 144-148.
  59. Tarachiwin, L., Ute, K., Kobayashi, A. and Fukusaki, E. (2007) $^1H$NMR based metabolic profiling in the evaluation of Japanese green tea quality. J. Agric. Food Chem. 55, 9330-9336. https://doi.org/10.1021/jf071956x
  60. Tilton, R., Paiva, A. A., Guan, J. Q., Marathe, R., Jiang, Z., van Eyndhoven, W., Bjoraker, J., Prusoff, Z., Wang, H., Liu, S. H. and Cheng, Y. C. (2010) A comprehensive platform for quality control of botanical drugs (PhytomicsQC): a case study of Huangqin Tang (HQT) and PHY906. Chin. Med. 5, 30. https://doi.org/10.1186/1749-8546-5-30
  61. Tsai, T. R., Tseng, T. Y., Chen, C. F. and Tsai, T. H. (2002) Identification and determination of geniposide contained in Gardenia jasminoides and in two preparations of mixed traditional Chinese medicines. J. Chromatogr. A 961, 83-88. https://doi.org/10.1016/S0021-9673(02)00365-5
  62. U.S. Food and Drug Administration (2006a) Chemistry Review Data Sheet. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/nda/2006/021902s000_chemr.pdf/.
  63. U.S. Food and Drug Administration (2006b) Drugs@FDA. Available from: http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index. cfm?fuseaction=Search.DrugDetails/.
  64. Van der Kooy, F., Verpoorte, R. and Meyer, J. M. (2008) Metabolomic quality control of claimed anti-malarial Artemisia afra herbal remedy and A. afra and A. annua plant extracts. S. Afr. J. Bot. 74, 186-189. https://doi.org/10.1016/j.sajb.2007.10.004
  65. Weckwerth, W. and Morgenthal, K. (2005) Metabolomics: from pattern recognition to biological interpretation. Drug Discov. Today 10, 1551-1558. https://doi.org/10.1016/S1359-6446(05)03609-3
  66. Wichitnithad, W., Jongaroonngamsang, N., Pummangura, S. and Rojsitthisak, P. (2009) A simple isocratic HPLC method for the simultaneous determination of curcuminoids in commercial turmeric extracts. Phytochem. Anal. 20, 314-319. https://doi.org/10.1002/pca.1129
  67. Xie, G., Ye, M., Wang, Y., Ni, Y., Su, M., Huang, H., Qiu, M., Zhao, A., Zheng, X., Chen, T. and Jia, W. (2009) Characterization of pu-erh tea using chemical and metabolic profiling approaches. J. Agric Food Chem. 57, 3046-3054. https://doi.org/10.1021/jf804000y
  68. Xu, L., Li, J., Yan, C. and Shan, A. (2007) Study on HPLC method to determine contents of Schisandrin A andSchisandrin B in Schisandra chinensis extraction. J. Northeast Agric. Univ. 14, 323-326.
  69. Yang, S. Y., Kim, H. K., Lefeber, A. W., Erkelens, C., Angelova, N., Choi, Y. H. and Verpoorte, R. (2006) Application of two-dimensional nuclear magnetic resonance spectroscopy to quality control of ginseng commercial products. Planta Med. 72, 364-369. https://doi.org/10.1055/s-2005-916240
  70. Yang, X., Yang, L., Xiong, A., Li, D. and Wang, Z. (2011) Authentication of Senecio scandens and S. vulgaris based on the comprehensive secondary metabolic patterns gained by UPLC-DAD/ESI-MS. J. Pharm. Biomed. Anal. 56, 165-172. https://doi.org/10.1016/j.jpba.2011.05.004
  71. Yen, G. C. and Chen, H. Y. (1995) Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 43, 27-32. https://doi.org/10.1021/jf00049a007
  72. Zhang, A., Sun, H., Wang, P., Han, Y. and Wang, X. (2012) Modern analytical techniques in metabolomics analysis. Analyst 137, 293-300. https://doi.org/10.1039/C1AN15605E
  73. Zhang, Q. and Ye, M. (2009) Chemical analysis of the Chinese herbal medicine Gan-Cao (licorice). J. Chromatogr. A 1216, 1954-1969. https://doi.org/10.1016/j.chroma.2008.07.072
  74. Zhao, Y., Chen, P., Lin, L., Harnly, J. M., Yu, L. L. and Li, Z. (2011) Tentative identification, quantitation, and principal component analysis of green pu-erh, green, and white teas using UPLC/DAD/MS. Food Chem. 126, 1269-1277. https://doi.org/10.1016/j.foodchem.2010.11.055

Cited by

  1. From quality markers to data mining and intelligence assessment: A smart quality-evaluation strategy for traditional Chinese medicine based on quality markers vol.44, pp.None, 2017, https://doi.org/10.1016/j.phymed.2018.01.017
  2. Accelerating Metabolite Identification in Natural Product Research: Toward an Ideal Combination of Liquid Chromatography-High-Resolution Tandem Mass Spectrometry and NMR Profiling, in Silico Databases vol.91, pp.1, 2017, https://doi.org/10.1021/acs.analchem.8b05112
  3. Authentication of Sorrento Walnuts by NIR Spectroscopy Coupled with Different Chemometric Classification Strategies vol.10, pp.11, 2017, https://doi.org/10.3390/app10114003
  4. High-Resolution Magic Angle Spinning (HR-MAS) NMR-Based Fingerprints Determination in the Medicinal Plant Berberis laurina vol.25, pp.16, 2017, https://doi.org/10.3390/molecules25163647
  5. Metabolomic biomarkers of polycystic ovary syndrome related-obesity: a review of the literature vol.28, pp.3, 2017, https://doi.org/10.2478/rrlm-2020-0017
  6. Chemotypic variation of non-volatile constituents of Artemisia afra (African wormwood) from South Africa vol.147, pp.None, 2017, https://doi.org/10.1016/j.fitote.2020.104740
  7. TLC-Based Metabolite Profiling and Bioactivity-Based Scientific Validation for Use of Water Extracts in AYUSH Formulations vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/2847440
  8. A Mini-review on Ultra Performance Liquid Chromatography vol.37, pp.4, 2021, https://doi.org/10.13005/ojc/370411
  9. Unravelling the Anticancer Mechanisms of Traditional Herbal Medicines with Metabolomics vol.26, pp.21, 2021, https://doi.org/10.3390/molecules26216541
  10. Dissecting coffee seeds metabolome in context of genotype, roasting degree, and blending in the Middle East using NMR and GC/MS techniques vol.373, pp.no.pb, 2022, https://doi.org/10.1016/j.foodchem.2021.131452