• 제목/요약/키워드: Natural language processing (NLP)

검색결과 168건 처리시간 0.027초

Building an Annotated English-Vietnamese Parallel Corpus for Training Vietnamese-related NLPs

  • Dien Dinh;Kiem Hoang
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 ICEIC The International Conference on Electronics Informations and Communications
    • /
    • pp.103-109
    • /
    • 2004
  • In NLP (Natural Language Processing) tasks, the highest difficulty which computers had to face with, is the built-in ambiguity of Natural Languages. To disambiguate it, formerly, they based on human-devised rules. Building such a complete rule-set is time-consuming and labor-intensive task whilst it doesn't cover all the cases. Besides, when the scale of system increases, it is very difficult to control that rule-set. So, recently, many NLP tasks have changed from rule-based approaches into corpus-based approaches with large annotated corpora. Corpus-based NLP tasks for such popular languages as English, French, etc. have been well studied with satisfactory achievements. In contrast, corpus-based NLP tasks for Vietnamese are at a deadlock due to absence of annotated training data. Furthermore, hand-annotation of even reasonably well-determined features such as part-of-speech (POS) tags has proved to be labor intensive and costly. In this paper, we present our building an annotated English-Vietnamese parallel aligned corpus named EVC to train for Vietnamese-related NLP tasks such as Word Segmentation, POS-tagger, Word Order transfer, Word Sense Disambiguation, English-to-Vietnamese Machine Translation, etc.

  • PDF

Bi-directional Maximal Matching Algorithm to Segment Khmer Words in Sentence

  • Mao, Makara;Peng, Sony;Yang, Yixuan;Park, Doo-Soon
    • Journal of Information Processing Systems
    • /
    • 제18권4호
    • /
    • pp.549-561
    • /
    • 2022
  • In the Khmer writing system, the Khmer script is the official letter of Cambodia, written from left to right without a space separator; it is complicated and requires more analysis studies. Without clear standard guidelines, a space separator in the Khmer language is used inconsistently and informally to separate words in sentences. Therefore, a segmented method should be discussed with the combination of the future Khmer natural language processing (NLP) to define the appropriate rule for Khmer sentences. The critical process in NLP with the capability of extensive data language analysis necessitates applying in this scenario. One of the essential components in Khmer language processing is how to split the word into a series of sentences and count the words used in the sentences. Currently, Microsoft Word cannot count Khmer words correctly. So, this study presents a systematic library to segment Khmer phrases using the bi-directional maximal matching (BiMM) method to address these problematic constraints. In the BiMM algorithm, the paper focuses on the Bidirectional implementation of forward maximal matching (FMM) and backward maximal matching (BMM) to improve word segmentation accuracy. A digital or prefix tree of data structure algorithm, also known as a trie, enhances the segmentation accuracy procedure by finding the children of each word parent node. The accuracy of BiMM is higher than using FMM or BMM independently; moreover, the proposed approach improves dictionary structures and reduces the number of errors. The result of this study can reduce the error by 8.57% compared to FMM and BFF algorithms with 94,807 Khmer words.

An Automatic Construction for Class Diagram from Problem Statement using Natural Language Processing

  • Utama, Ahmad Zulfiana;Jang, Duk-Sung
    • 한국멀티미디어학회논문지
    • /
    • 제22권3호
    • /
    • pp.386-394
    • /
    • 2019
  • This research will describe algorithm for class diagram extraction from problem statements. Class diagram notation consist of class name, attributes, and operations. Class diagram can be extracted from the problem statement automatically by using Natural Language Processing (NLP). The extraction results heavily depends on the algorithm and preprocessing stage. The algorithm obtained from various sources with additional rules that are obtained in the implementation phase. The evaluation features using five problem statement with different domains. The application will capture the problem statement and draw the class diagram automatically by using Windows Presentation Foundation(WPF). The classification accuracy of 100% was achieved. The final algorithm achieved 92 % of average precision score.

Syntactic and semantic information extraction from NPP procedures utilizing natural language processing integrated with rules

  • Choi, Yongsun;Nguyen, Minh Duc;Kerr, Thomas N. Jr.
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.866-878
    • /
    • 2021
  • Procedures play a key role in ensuring safe operation at nuclear power plants (NPPs). Development and maintenance of a large number of procedures reflecting the best knowledge available in all relevant areas is a complex job. This paper introduces a newly developed methodology and the implemented software, called iExtractor, for the extraction of syntactic and semantic information from NPP procedures utilizing natural language processing (NLP)-based technologies. The steps of the iExtractor integrated with sets of rules and an ontology for NPPs are described in detail with examples. Case study results of the iExtractor applied to selected procedures of a U.S. commercial NPP are also introduced. It is shown that the iExtractor can provide overall comprehension of the analyzed procedures and indicate parts of procedures that need improvement. The rich information extracted from procedures could be further utilized as a basis for their enhanced management.

한국어 언어 모델을 활용한 보이스피싱 탐지 기능 개선 (Exploiting Korean Language Model to Improve Korean Voice Phishing Detection)

  • ;박동주
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권10호
    • /
    • pp.437-446
    • /
    • 2022
  • 보이스피싱 통화 내용을 탐지하고 분류하는데 핵심 엔진으로 최신 머신러닝(ML) 및 딥러닝(DL) 알고리즘과 결합된 자연어 처리(NLP)의 텍스트 분류 작업이 널리 사용된다. 비대면 금융거래의 증가와 더불어 보이스피싱 통화 내용 분류에 대한 많은 연구가 진행되고 양호한 성과를 보이고 있지만, 최신 NLP 기술을 활용한 성능 개선의 필요성이 여전히 존재한다. 본 논문은 KorCCVi라는 레이블이 지정된 한국 보이스 피싱 데이터의 텍스트 분류를 기반으로 여러 다른 최신 알고리즘과 비교하여 사전 훈련된 한국어 모델 KoBERT의 한국 보이스 피싱 탐지 성능을 벤치마킹한다. 실험 결과에 따르면 KoBERT 모델의 테스트 집합에서 분류 정확도가 99.60%로 다른 모든 모델의 성능을 능가한다.

Comparative study of text representation and learning for Persian named entity recognition

  • Pour, Mohammad Mahdi Abdollah;Momtazi, Saeedeh
    • ETRI Journal
    • /
    • 제44권5호
    • /
    • pp.794-804
    • /
    • 2022
  • Transformer models have had a great impact on natural language processing (NLP) in recent years by realizing outstanding and efficient contextualized language models. Recent studies have used transformer-based language models for various NLP tasks, including Persian named entity recognition (NER). However, in complex tasks, for example, NER, it is difficult to determine which contextualized embedding will produce the best representation for the tasks. Considering the lack of comparative studies to investigate the use of different contextualized pretrained models with sequence modeling classifiers, we conducted a comparative study about using different classifiers and embedding models. In this paper, we use different transformer-based language models tuned with different classifiers, and we evaluate these models on the Persian NER task. We perform a comparative analysis to assess the impact of text representation and text classification methods on Persian NER performance. We train and evaluate the models on three different Persian NER datasets, that is, MoNa, Peyma, and Arman. Experimental results demonstrate that XLM-R with a linear layer and conditional random field (CRF) layer exhibited the best performance. This model achieved phrase-based F-measures of 70.04, 86.37, and 79.25 and word-based F scores of 78, 84.02, and 89.73 on the MoNa, Peyma, and Arman datasets, respectively. These results represent state-of-the-art performance on the Persian NER task.

거대언어모델과 문서검색 알고리즘을 활용한 한국원자력연구원 규정 질의응답 시스템 개발 (Development of a Regulatory Q&A System for KAERI Utilizing Document Search Algorithms and Large Language Model)

  • 김홍비;유용균
    • 한국산업정보학회논문지
    • /
    • 제28권5호
    • /
    • pp.31-39
    • /
    • 2023
  • 최근 자연어 처리(NLP) 기술, 특히 ChatGPT를 비롯한 거대 언어 모델(LLM)의 발전으로 특정 전문지식에 대한 질의응답(QA) 시스템의 연구개발이 활발하다. 본 논문에서는 거대언어모델과 문서검색 알고리즘을 활용하여 한국원자력연구원(KAERI)의 규정 등 다양한 문서를 이해하고 사용자의 질문에 답변하는 시스템의 동작 원리에 대해서 설명한다. 먼저, 다수의 문서를 검색과 분석이 용이하도록 전처리하고, 문서의 내용을 언어모델에서 처리할 수 있는 길이의 단락으로 나눈다. 각 단락의 내용을 임베딩 모델을 활용하여 벡터로 변환하여 데이터베이스에 저장하고, 사용자의 질문에서 추출한 벡터와 비교하여 질문의 내용과 가장 관련이 있는 내용들을 추출한다. 추출된 단락과 질문을 언어 생성 모델의 입력으로 사용하여 답변을 생성한다. 본 시스템을 내부 규정과 관련된 다양한 질문으로 테스트해본 결과 복잡한 규정에 대하여 질문의 의도를 이해하고, 사용자에게 빠르고 정확하게 답변을 제공할 수 있음을 확인하였다.

Design and Construction of a NLP Based Knowledge Extraction Methodology in the Medical Domain Applied to Clinical Information

  • Moreno, Denis Cedeno;Vargas-Lombardo, Miguel
    • Healthcare Informatics Research
    • /
    • 제24권4호
    • /
    • pp.376-380
    • /
    • 2018
  • Objectives: This research presents the design and development of a software architecture using natural language processing tools and the use of an ontology of knowledge as a knowledge base. Methods: The software extracts, manages and represents the knowledge of a text in natural language. A corpus of more than 200 medical domain documents from the general medicine and palliative care areas was validated, demonstrating relevant knowledge elements for physicians. Results: Indicators for precision, recall and F-measure were applied. An ontology was created called the knowledge elements of the medical domain to manipulate patient information, which can be read or accessed from any other software platform. Conclusions: The developed software architecture extracts the medical knowledge of the clinical histories of patients from two different corpora. The architecture was validated using the metrics of information extraction systems.

한국어 자연언어처리의 NIF 적용에 관한 연구 (NIF Application for Korean Natural Language Processing)

  • 서지우;원유성;김정욱;함영균;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2014년도 제26회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.167-172
    • /
    • 2014
  • 본 논문에서는 한국어 자연언어처리 결과물들을 통일된 형식으로 표준화하기 위해서 NIF를 적용한 내용을 다룬다. 한국어 자연언어처리에 NIF 온톨로지를 적용한 이유와 적용과정에서 야기된 문제점들을 논의한다. 한국어 NLP2RDF 구축과정에서 한국어 자연언어처리에 필요한 새로운 클래스와 프로퍼티들을 추가로 정의하여 NIF 온톨로지를 변형 적용하였다.

  • PDF

Extraction of Thematic Roles from Dictionary Definitions

  • Mc-Hale, Michael-L.;Myaeng, Sung-H.
    • 한국언어정보학회:학술대회논문집
    • /
    • 한국언어정보학회 1996년도 Language, Information and Computation = Selected Papers from the 11th Pacific Asia Conference on Language, Information and Computation, Seoul
    • /
    • pp.137-146
    • /
    • 1996
  • Our research goal has been the development of a domain independent natural language processing (NLP) system suitable for information retrieval. As part of that research, we have investigated ways to automatically extend the semantics of a lexicon derived from machine-readable lexical sources. This paper details the extraction of thematic roles derived from lexical patterns in a machine-readable dictionary.

  • PDF