• 제목/요약/키워드: Natural language process

검색결과 252건 처리시간 0.026초

Applying the Fuzzy Decision-Making Method for Program Evaluation and Management Policy of Vietnamese Higher Education

  • TONG, Kiet Hao;NGUYEN, Quyen Le Hoang Thuy To;NGUYEN, Tuyen Thi Mong;NGUYEN, Phong Thanh;VU, Ngoc Bich
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권9호
    • /
    • pp.719-726
    • /
    • 2020
  • Education policy is a dynamic process featuring social development trends. The world countries have focused their education program on empowering the learners for future life and work. This paper aims to assess the higher education curriculum based on a survey of 280 students, employers, alumni, and lecturers in both social sciences and natural sciences in Ho Chi Minh City, Vietnam. The fuzzy decision-making method, namely the Fuzzy Extent Analysis Method (F-EAM), was applied to measure the relative weight of each parameter. Seven factors under the curriculum development have been put in the ranking. Input with emphasis on foreign language was the highest priority in curriculum development, given the expected demand of the labor market. Objective and learning outcome and teaching activities ranked second and third, respectively. The traditional triangle of teaching content, methodology, and evaluation and assessment are still proven their roles, but certain modifications have been defined in the advanced curriculum. Teaching facilities had the least weight among the seven dimensions of curriculum development. The findings are helpful for education managers to efficiently allocate scarce resources to reform the curriculum to bridge the undergraduate quality gap between labor supply and demand, meeting the dynamic trends of social development.

한국어 서술어와 지식베이스 프로퍼티 연결 (Linking Korean Predicates to Knowledge Base Properties)

  • 원유성;우종성;김지성;함영균;최기선
    • 정보과학회 논문지
    • /
    • 제42권12호
    • /
    • pp.1568-1574
    • /
    • 2015
  • 본 논문은 자연언어 문장을 지식베이스의 지식 골격에 맞추어 지식의 형태로 변환하기 위한 과정 중의 하나인 관계추출(Relation Extraction)을 목표로 한다. 특히, 문장 내에 있는 서술어(Predicate)에 집중하여 서술어와 관련성 높은 지식베이스 프로퍼티(Property or Relation)를 찾아내고, 이를 통해 두 개체(Entity)간의 의미를 파악하는 관계추출에 초점을 둔다. 이에 널리 활용되는 원격지도학습(Distant Supervision) 접근 방식에 따라, 지식베이스와 자연언어 텍스트로부터 원격 학습이 가능한 레이블(Labeled) 데이터를 자동으로 마련하여 지식베이스 프로퍼티에 대한 어휘화 작업을 수행한다. 즉, 두 개체 사이의 관계로 표현되는 서술어와, 온톨로지로 정의할 수 있는 프로퍼티와의 연결을 통해, 텍스트로부터 구조적 정보를 생성할 수 있는 기반을 마련하고 최종적으로 지식베이스 확장의 가능성을 열어준다.

정보시스템에서 퍼지용어의 확장된 AHP를 사용한 레벨화와 유사성 측정 (A Leveling and Similarity Measure using Extended AHP of Fuzzy Term in Information System)

  • 류경현;정환묵
    • 한국지능시스템학회논문지
    • /
    • 제19권2호
    • /
    • pp.212-217
    • /
    • 2009
  • 특정 분야의 용어를 표현하는 전문용어 사이의 계층관계를 학습하는 방법은 규칙기반학습방법, 통계기반학습방법 등이 있다. 본 논문에서는 문서에서 추출된 퍼지용어 정보를 바탕으로 한 온톨로지 구조를 카테고리화하여 퍼지용어의 전문성을 이용하여 주어진 퍼지용어의 상위어 후보를 레벨화한 후 퍼지용어 의미유사도를 계산하여 선택된 후보들 중에서 최적의 상위어후보를 결정한다. 즉, 퍼지용어의 전문성을 레벨화하기 위한 확장된 AHP방법은 퍼지용어사이의 비교를 통해 가중치나 상대적 중요성을 결정한 후 퍼지집합의 Min연산자와 다이스계수, Min+다이스계수방법들을 비교한다. 이 방법들은 퍼지용어 의미유사도에 따라 문서들이 가지는 의미론적 내용과 관계의 식별을 바탕으로 보다 더 정확하게 문서를 분류할 수 있고 자연어처리 등 많은 분야에 활용될 수 있을 것이다.

소프트웨어 부품의 검색을 위한 의미 유사도 측정 (A Semantic Similarity Measure for Retrieving Software Components)

  • 김태희;강문설
    • 한국정보처리학회논문지
    • /
    • 제3권6호
    • /
    • pp.1443-1452
    • /
    • 1996
  • 본 논문에서는 재사용가능한 소프트웨어 부품의 분류 과정을 자동화하여 라이브 러리에 구조적으로 저장하고, 사용자의 요구사항을 만족하는 부품을 효율적으로 검색 하기 위하여 부품들 사이의 의미 유사도를 측정하는 방법을 제안한다. 자연어로 기술 된 부품 설명서로부터 정보를 획득하여 부품의 특성을 표현하는 패싯을 결정하고, 각 패싯에 해당하는 항목을 자동으로 추출하여 부품 식별자를 구성하며, 분류된 부품들 의 유사성에 따라 비슷한 특성을 갖는 부품들을 인접한 위치에 저장한다. 그리고 사 용자의 요구사항을 만족하는 부품들을 검색하기 위하여 질의와 소프트웨어 라이브러 리에 저장된 부품들 사이의 의미 유사도를 측정한다. 재사용가능한 부품의 검색을 위 하여 의미유사도를 이용함으로써 단순히 사용자의 질의를 만족하는 부품들의 집합을 검색할 뿐만 아니라 질의를 만족하는 정도에 따라 검색된 부품들의 상관순위를 부여 하여 사용자들이 요구하는 부품의 검색 시간이 줄어들고 전체적인 검색 효율이 개선 되었다.

  • PDF

인간의 감정을 자동 인식하는 전자메일 클라이언트의 설계 및 구현 (Design and Implementation of E-mail Client based on Automatic Feeling Recognition)

  • 김나영;이상곤
    • 컴퓨터교육학회논문지
    • /
    • 제12권2호
    • /
    • pp.61-75
    • /
    • 2009
  • 현대에는 인터넷과 휴대폰의 대중화로 인해 일반 국민들도 전자메일 클라이언트를 통해 통신이 매우 자유롭다. 전자메일의 사용은 개인적인 일은 물론 기업 사무, 광고 메일, 뉴스, 광고 메일 등 폭넓게 이용되고 있으나 여러 문제점들이 나타나고 있다. 이제는 전자메일 클라이언트에 자연언어 처리 기술의 고급 기능의 탑재와 컴퓨터 바이러스 혹은 스팸 메일을 방지하는 고기능이 임베디드 되어야 한다. 이 기술을 이용하여 전자메일의 내용에 포함된 작성자의 "즐거움", "성남", "슬픔"등 인간의 감정 표현을 여섯 가지의 감정 속성(전달 내용, 말투 표현, 불쾌 표현, 기쁨 표현, 슬픔 표현, 상대방 입장)으로 자동 매핑 하여 메일 클라이언트의 송신과 수신 프로세서에서 보다 정밀한 사람의 감정을 이해하고자 한다. 본 논문에서는 메일의 송신 전에 문서의 내용 중에 불쾌한 표현이 존재하면 제거하도록 문서 교정을 독려하는 지능적인 전자메일 클라이언트 시스템을 설계하고 구현하였다.

  • PDF

한의진단 Ontology 구축과 평가 (Development and Evaluation of Ontology for Diagnosis in Oriental Medicine)

  • 신상우;정길산;박경모;김선호;박종현
    • 동의생리병리학회지
    • /
    • 제20권1호
    • /
    • pp.202-208
    • /
    • 2006
  • The goal of this study is to develop knowledge representation method for the construction and evaluation of ontology for diagnosis in oriental medicine. To develop the expert system for decision making on diagnosis and treatment, the systematic and structural knowledge which can be processible in EMR(Electronic Medical Record) must be precedent, and the Computational Process which control the system as well. This study set up an ontology as a trial model to represent the oriental medical knowledge into the machine processible one. Protege 2.1 has been used to build the ontology, and the serialization format of our ontology is the XML document based on OWL. The components of oriental medical diagnosis was arranged with the combination of symptoms which belong to the certain symptom patterns. Then natural language which expresses the oriental medical diagnosis components were converted into the logical sentence, and individual characteristic symptoms into each values of specific properties. In addition to the study, the diagnosis software for oriental medicine was developed and it used the ontology which we developed. Sequently, we tested the software to confirm the appropriateness of ontology. The result of the test shows that diagnostic questions are automatically formulated according to the diagnosis components of this ontology and that as such diagnostic results are induced. Therefore, the ontology system in this study will be efficient to develop the diagnosis program and useful as a tool for doctors to make decision. But, it is not recommendable to apply the system to the clinical environment until the clear diagnosis standards are introduced, and the more reliable diagnosis program can be developed based on the more appropriate ontology mentioned above.

병렬 말뭉치 필터링을 적용한 Filter-mBART기반 기계번역 연구 (Filter-mBART Based Neural Machine Translation Using Parallel Corpus Filtering)

  • 문현석;박찬준;어수경;박정배;임희석
    • 한국융합학회논문지
    • /
    • 제12권5호
    • /
    • pp.1-7
    • /
    • 2021
  • 최신 기계번역 연구 동향을 살펴보면 대용량의 단일말뭉치를 통해 모델의 사전학습을 거친 후 병렬 말뭉치로 미세조정을 진행한다. 많은 연구에서 사전학습 단계에 이용되는 데이터의 양을 늘리는 추세이나, 기계번역 성능 향상을 위해 반드시 데이터의 양을 늘려야 한다고는 보기 어렵다. 본 연구에서는 병렬 말뭉치 필터링을 활용한 mBART 모델 기반의 실험을 통해, 더 적은 양의 데이터라도 고품질의 데이터라면 더 좋은 기계번역 성능을 낼 수 있음을 보인다. 실험결과 병렬 말뭉치 필터링을 거친 사전학습모델이 그렇지 않은 모델보다 더 좋은 성능을 보였다. 본 실험결과를 통해 데이터의 양보다 데이터의 질을 고려하는 것이 중요함을 보이고, 해당 프로세스를 통해 추후 말뭉치 구축에 있어 하나의 가이드라인으로 활용될 수 있음을 보였다.

지식베이스를 이용한 작업자 증상 기반 화학물질 추정 시스템 설계 (Worker Symptom-based Chemical Substance Estimation System Design Using Knowledge Base)

  • 주용택;이동훈;신은지;유상우;신동일
    • 한국가스학회지
    • /
    • 제25권3호
    • /
    • pp.9-15
    • /
    • 2021
  • 본 논문에서는 산업현장 화학물질 인체 접촉 증상 기반 지식베이스 구축 및 화학물질 추정 시스템 설계에 대한 연구이다. 미국NIH에서 제공하는 WISER 프로그램의 499개의 화학물질 접촉 증상 정보로 활용하였다. 지식베이스 구축을 위해 AllegroGraph 7.0.1 프로그램을 이용하였으며 입력된 Chemical structure로 Triple 값인 Cas No., Synonyms, Symptom, SMILES, InChl, Formula를 사용 하였다. 또한 작업자의 증상을 안내하는 방법은 AI 스피커를 활용한 방식이 가능하며 지식베이스 구축 결과 암모니아(CAS No: 7664-41-7)를 기준으로 39개의 증상이 WISER 프로그램과 동일함을 확인 하였다. 이를 통해 화학물질 추정 시스템의 증상 추출 과정에 지식베이스 구축이 가능하였다.

지도학습 머신러닝 기반 카테고리 목록 분류 및 추천 시스템 구현 (Development of Supervised Machine Learning based Catalog Entry Classification and Recommendation System)

  • 이형우
    • 인터넷정보학회논문지
    • /
    • 제20권1호
    • /
    • pp.57-65
    • /
    • 2019
  • 200 만명 이상의 회원을 보유하고 있는 "도매꾹" B2B 온라인 쇼핑몰인 경우70% 이상의 시장 점유율로 하루에 80만개 이상의 아이템이 판매되고 있다. 하지만, 동일하거나 유사한 물품이 서로 다른 카탈로그 엔트리에 저장 및 등록되어 있기 때문에 구매자가 아이템을 검색하는 과정에서 어려움을 느끼며 B2B 대형 쇼핑몰 관리에도 문제점이 발생하고 있다. 따라서 이에 대한 해결 방안으로 본 연구에서는 대단위 쇼핑몰 구매 정보를 기반으로 지도-학습 머신러닝 기법을 적용하여 상품에 대한 카탈로그 목록 자동 분류 및 추천 시스템을 개발하였다. 구체적으로 판매자가 자연어 형태로 물품 등록 정보를 입력하면 KoNLPy 형태소 분석 과정을 수행하였으며, Naïve Bayes 분류 방식을 응용하여 물품에 가장 적합한 카탈로그 정보를 자동으로 추천해주는 시스템을 구현하였다. 정확도가 향상된 카테고리 목록을 구축하여 결과적으로 검색 속도와 쇼핑몰 매출을 향상시키는 효과가 있었다.

음표 임베딩과 마디 임베딩을 이용한 곡의 생성 및 정량적 평가 방법 (Creating Songs Using Note Embedding and Bar Embedding and Quantitatively Evaluating Methods)

  • 이영배;정성훈
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권11호
    • /
    • pp.483-490
    • /
    • 2021
  • 인공신경망을 이용해서 기존 곡을 학습시키고 새로운 곡을 생성하기 위해서는 전처리 과정으로 곡을 신경망이 인식할 수 있는 숫자로 변환해야 하며, 지금까지는 원-핫 인코딩이 사용되어 왔다. 본 논문에서는 음표 임베딩과 마디 임베딩을 제안하고 기존의 원-핫 인코딩과 성능을 비교하였다. 성능비교는 어떤 방식이 작곡가가 작곡한 곡과 유사한 곡을 생성하는지를 정량적 평가에 근거해서 수행하였으며, 평가방법으로는 자연어 처리 분야에서 사용되는 정량적 평가 방법들을 이용하였다. 평가결과 마디 임베딩으로 생성한 곡이 가장 좋았으며 그 다음으로 음표 임베딩이 좋았다. 이는 본 논문에서 제안한 음표 임베딩과 마디 임베딩이 원-핫 인코딩보다 작곡가가 작곡한 곡과 유사한 곡을 생성한 것으로서 의의가 있다.