• Title/Summary/Keyword: Natural immune antibody

Search Result 62, Processing Time 0.027 seconds

Cholera Toxin Disrupts Oral Tolerance via NF-κB-mediated Downregulation of Indoleamine 2,3-dioxygenase Expression

  • Kim, Kyoung-Jin;Im, Suhn-Young
    • Biomedical Science Letters
    • /
    • v.23 no.3
    • /
    • pp.175-184
    • /
    • 2017
  • Cholera toxin (CT) is an ADP-ribosylating bacterial exotoxin that has been used as an adjuvant in animal studies of oral immunization. The mechanisms of mucosal immunogenicity and adjuvanticity of CT remain to be established. In this study, we investigated the role of indoleamine 2,3-dioxygenase (IDO), which participates in the induction of immune tolerance, in CT-mediated breakdown of oral tolerance. When IDO-deficient ($IDO^{-/-}$) mice and their littermates were given oral ovalbumin, significant changes in antibody responses, footpad swelling and $CD4^+$ T cell proliferation were not observed in $IDO^{-/-}$ mice. Feeding of CT decreased IDO expression in mesenteric lymph nodes (MLN) and Peyer's patch (PP). CT-induced downregulation of IDO expression was reversed by inhibitors of nuclear factor-kappa B (NF-${\kappa}B$), pyrrolidine dithiocarbamate and p50 small interfering RNA. IDO expression was downregulated by the NF-${\kappa}B$ inducers lipopolysaccharide and tumor necrosis factor-${\alpha}$. CT dampened IDO activity and mRNA expression in dendritic cells from MLN and PP. These data indicate that CT disrupts oral tolerance by activating NF-${\kappa}B$, which in turn downregulates IDO expression. This study betters the understanding of the molecular mechanism underlying CT-mediated abrogation of oral tolerance.

Inhibitory Effect of Cotesia plutellae Bracovirus (CpBV) on Development of a Non-natural Host, Spodoptera exigua (프루텔고치벌(Cotesia plutellae) 유래 폴리드나바이러스의 비자연 기주 파밤나방(Spodoptera exigua)에 대한 발육 억제 효과)

  • Kim Yonggyun;Kim Jiwon
    • Korean journal of applied entomology
    • /
    • v.43 no.3 s.136
    • /
    • pp.217-223
    • /
    • 2004
  • Polydnavirus is a symbiotic virus of some endoparasitic wasps and plays crucial roles in inhibiting immune responses and retarding development of the parasitized hosts. Cotesia plutellae bracovirus (CpBV) is a polydnavirus suggesting a major causative to change developmental physiology of the parasitized host. Here, we investigated whether CpBV can interrupt development of non-natural host. Beet armyworm, Spodoptera exigua, is used as a non-permissible host for parasitization of C. plutellae. Extract from the calyx region of C. plutellae contained CpBV, which was confirmed by immunoblotting with a polyclonal antibody raised against CpBV. One female equivalent of CpBV extract was injected into hemocoel of late 4th instar larvae of S. exigua. The injected larvae showed delayed larval period, decrease of body weight gain, and inability of pupal metamorphosis. These inhibitory effect of the CpBV extract was rescued by injection along with CpBV antibody, though the antibody itself did not give any effect on development of the larvae. This result clearly shows that CpBV can interrupt developmental physiology of a non-natural host for its symbiotic wasp.

Evaluation of Cytotoxicity for Immunity Rejection of US11, hDAF and FasL Transgene-Transfected Cells

  • Kang, Jung Won;Shin, Hyeon Yeong;Oqani, Reza K.;Lin, Tao;Lee, Jae Eun;Kim, So Yeon;Lee, Joo Bin;Jin, Dong Il
    • Reproductive and Developmental Biology
    • /
    • v.41 no.3
    • /
    • pp.57-63
    • /
    • 2017
  • Xenotransplantation is proposed as a solution to the problem of organ shortage. However, transplantation of xenogeneic organs induces an antigen-antibody reaction in ${\alpha}$-1,3-gal structure that are not present in humans and primates, and thus complement is also activated and organs die within minutes or hours. In this study, we used FasL gene, which is involved in the immune response of NK cell, and US11, which suppresses MHC Class I cell membrane surface expression, to inhibit cell mediated rejection in the interspecific immunity rejection, and also hDAF(CD55) was introduced to confirm the response to C3 complement. These genes were tranfeced into Korean native pig fetal fibroblasts using pCAGGS vector. And cytotoxicity of NK cell and human complement was confirmed in each cell line. The US11 inhibited the cytotoxicity of NK cell and, in addition, the simultaneous expression of US11 and Fas ligand showed excellent suppress to T-lymphocyte cytotoxicity, hDAF showed weak resistance to cytotoxicity of natural killer cell but not in CD8+ CTLs. Cytotoxicity study with human complement showed that hDAF was effective for reducing complement reaction. In this studies have demonstrated that each gene is effective in reducing immune rejection.

The Comparative Analysis of the Titer of Seroconversion Rate Through the Natural Antibody and Antibody after Vaccination of Hepatitis A (A형 간염의 자연항체와 예방접종을 통한 항체 생성률의 역가 비교분석)

  • Kwon, Won Hyun;Kim, Kyung Hwa;Cho, Kyung A;Moon, Ki Choon;Kim, Jung In;Lee, In Won
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.2
    • /
    • pp.95-100
    • /
    • 2013
  • Purpose: Since 2008, hepatitis A patients was rapidly increasing. So, Most of the health checkup examinees were interested in whether hepatitis A antibody was a lot. thereby The number of tests was increasing. In recent years, Antibody test results in the range of cut-off values were increased. According to the cause analysis, most examinees had a hepatitis A vaccine. This study was conducted to classify hepatitis A antibody as natural antibody and antibody after vaccination and compared the titer for seroconversion rate based on cut-off values. Materials and Methods: For a month in August 2012, First, We surveyed 185 health examinees and classified 119 health examinees who had acquired natural antibody. Second, for employees who were inoculated against hepatitis at our hospital, We classified into 53 primary inoculators and 59 secondary inculators. when the standard of cut-off value was 1, The seroconversion rate was compared the titer divided by 0.90-1.10 (${\pm}$), 0.60-0,89 (1+), 0.30-0.59 (2+), 0.01-0.29 (3+) and we compared the titer for seroconversion rate by each manufacturer after vaccination. Results: When the standard of cut-off value was 1, the titer of 119 health examinees who had acquired natural antibody was 0.90-1.10 (${\pm}$): 0%, 0.60-0.89 (1+): 0%, 0.30-0.59 (2+): 4.2%, 0.01-0.29 (3+): 96% and the titer of <0.60 ($${\geq_-}2+$$) was 100%. The titer of 53 primary inoculators was 0.90-1.10 (${\pm}:59.1%$), 0.60-0.89 (1+): 18.1%, 0.30-0.59 (2+): 18.1%, 0.01-0.29 (3+): 4.6% and the seroconversion rate was 45.3%. The titer of $${\geq_-}0.60$$ ($${\leq_-}1+$$) was 77.3%. The titer of 59 secondary inoculators was 0.90-1.10 (${\pm}:1.9%$), 0.60-0.89 (1+): 15.4%, 0.30-0.59 (2+): 36.54%, 0.01-0.29 (3+): 46.2% and the seroconversion rate was 88.1%. The titer of <0.60 ($${\geq_-}2+$$) was 82.7%. When we compared the titer for seroconversion rate by each manufacturer after vaccination, the seroconversion rate of 53 primary inoculators was BNIBT: 20.8% (${\pm}:24.5%$), GB: 15.7% (${\pm}:7.8%$), RIAKEY: 94.3% (${\pm}:3.8%$), ROCHE: 83% (${\pm}:0%$), ABBOTT: 73.1% (${\pm}:5.8%$) and the seroconversion rate of 59 secondary inoculators was BNIBT : 86.4% (${\pm}:1.7%$), GB: 88.5% (${\pm}:1.9%$), RIAKEY: 100% (${\pm}:0%$), ROCHE: 98.3% (${\pm}:0%$), ABBOTT: 98.2% (${\pm}:0%$). Conclusion: The study show that the titer of natural immune antibodies is higher than the titer of vaccination and the titer of secondary inoculation is mainly higher than the titer of primary inoculation. Consequently, if we know the titer of hepatitis A antibodies, it will help to give resullt reports. And then, when we compared the titer and the seroconversion rate by each manufacturer, There was a very distinct difference. As the test subjects inoculate against hepatitis A (HAV), it is considered BNIBT, GB will occur false negative rate and RIAKEY, ROCHE, ABOTT will occur false positive rate.

  • PDF

Zoning Permanent Basic Farmland Based on Artificial Immune System coupling with spatial constraints

  • Hua, Wang;Mengyu, Wang;Yuxin, Zhu;Jiqiang, Niu;Xueye, Chen;Yang, Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1666-1689
    • /
    • 2021
  • The red line of Permanent Basic Farmland is the most important part in the "three-line" demarcation of China's national territorial development plan. The scientific and reasonable delineation of the red line is a major strategic measure being taken by China to improve its ability to safeguard the practical interests of farmers and guarantee national food security. The delineation of Permanent Basic Farmland zoning (DPBFZ) is essentially a multi-objective optimization problem. However, the traditional method of demarcation does not take into account the synergistic development goals of conservation of cultivated land utilization, ecological conservation, or urban expansion. Therefore, this research introduces the idea of artificial immune optimization and proposes a multi-objective model of DPBFZ red line delineation based on a clone selection algorithm. This research proposes an objective functional system consisting of these three sub-objectives: optimal quality of cropland, spatially concentrated distribution, and stability of cropland. It also takes into consideration constraints such as the red line of ecological protection, topography, and space for major development projects. The mathematical formal expressions for the objectives and constraints are given in the paper, and a multi-objective optimal decision model with multiple constraints for the DPBFZ problem is constructed based on the clone selection algorithm. An antibody coding scheme was designed according to the spatial pattern of DPBFZ zoning. In addition, the antibody-antigen affinity function, the clone mechanism, and mutation strategy were constructed and improved to solve the DPBFZ problem with a spatial optimization feature. Finally, Tongxu County in Henan province was selected as the study area, and a controlled experiment was set up according to different target preferences. The results show that the model proposed in this paper is operational in the work of delineating DPBFZ. It not only avoids the adverse effects of subjective factors in the delineation process but also provides multiple scenarios DPBFZ layouts for decision makers by adjusting the weighting of the objective function.

Effect of Pueraria thunbergiana Extracts on the Activation of Immune Cells (칡 추출물의 면역세포 활성화 효과)

  • Kim, Jong-Jin;Lee, Hyeok-Jae;Yee, Sung-Tae
    • Journal of Life Science
    • /
    • v.22 no.8
    • /
    • pp.1107-1113
    • /
    • 2012
  • In this experiment, the effects of Pueraria thunbergiana extracts on the activation of immune cells were studied. An immune cell-activating factor was partially purified from P. thunbergiana by means of physiological saline extraction, acetone precipitation, and heating inactivation. P. thunbergiana extracts increased the proliferation of spleen cells and induced the production of IL-2, IL-6, TNF-${\alpha}$, and IFN-${\gamma}$ by spleen cells. Also, they increased the proliferation of purified B cells and the production of IgM antibody in a dose-dependent fashion. The extract self-induced NO synthesis in a mouse macrophage cell line (RAW264.7). When cell lines were treated with extracts, the cytokines' (IL-$1{\beta}$, IL-6, and TNF-${\alpha}$) production was markedly increased. Therefore, P. thunbergiana extract can self-activate spleen cells, B cells, and macrophages. These results might be useful in further studies into a possible immune-activating agent derived from P. thunbergiana for the development of functional foods and drugs.

A Review on Physical Activity for Health Care in the Era of COVID-19 (COVID-19 시대의 건강관리를 위한 신체활동 고찰)

  • Yoo, Jae-Hyun
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.2
    • /
    • pp.149-157
    • /
    • 2021
  • One year has passed since the pandemic of COVID-19, which occurred in Wuhan, China, in November 2019 began. Worldwide, as of January 2021, more than 95 million people have been infected, and the death toll is higher than 2 million. In Korea, there are 74,262 infected and 1,328 dead, and government policies such as social distancing to prevent infection are being implemented. Accordingly, many inconveniences occurred in the physical activity environment, such as the closure of various sports facilities. It was necessary to consider physical activities to maintain healthy life while cooperating with the national policy while preventing infection. This study investigated the benefits of physical activity to reduce the risk of trichomoniasis and diabetes, improve bone mineral density, prolong healthy lifespan, maintain activity performance with aging, and improve psychological anxiety and depression. In addition, the physiological changes that may occur in the situation of stopping exercise due to social distancing to prevent COVID-19 infection were reviewed. In addition, moderate-intensity exercise that helps strengthen immune function by activating natural killer cells, neutrophils, and antibody responses was investigated. In addition, it reduces the level and function of blood B-cells, T-cells, and natural killer cells for several hours, decreases phagocytosis of neutrophils in the nasal cavity, increases inflammatory cytokines, decreases immune function, and increases infection. High-intensity exercise was considered. Therefore, in the age of COVID-19, long-term high-intensity exercise such as marathon, which causes impaired immune function, should be refrained from. And you should do moderate-intensity regular aerobic exercise such as fast walking to help prevent infection. It is also recommended to participate in resistance exercises to prevent loss of muscle mass.

Preferential Expression of IgA Isotype Switching-associated Transcripts in Mouse Intestinal Lymphoid Tissues (마우스 내장 림프조직에서 우세하게 발현되는 IgA Isotype Switching 관련 전사체의 분석)

  • Chae, Byung-Chul;Chun, Sung-Ki;Seo, Goo-Young;Kim, Hyun-A;Kim, Pyeung-Hyeun
    • IMMUNE NETWORK
    • /
    • v.5 no.4
    • /
    • pp.215-220
    • /
    • 2005
  • Background: Transforming growth factor-${\beta}$ (TGF-${\beta}1$) directs class switch recombination (CSR) to IgA isotype, which is a predominant antibody in mucosal surfaces. Although IgA is preferentially committed in mucosal lymphoid tissues, it is not definitely established whether hallmarks of IgA CSR such as IgA germ-line transcripts (GLT ${\alpha}$), post-switch transcripts (PST ${\alpha}$) and circle transcripts (CT ${\alpha}$) are readily expressed in such tissues. Therefore, we compared the expression of these transcripts among mouse Peyer's patches (PP), mesenteric lymph nodes (MLN), and spleen. Methods: Levels of GLTs, PSTs and CTs were measured by RT-PCR in isolated PPs, MLNs and spleen cells. Results: GLT ${\alpha}$ and PST ${\alpha}$ were well expressed in PP and MLN cells but in spleen cells. Similar patterns were observed in the expression of GL ${\gamma}$2b and PST ${\gamma}$2b. On the other hand, these transcripts were only inducible in spleen cells upon stimulated with LPS and TGF-${\beta}1$. In addition, CT${\alpha}$ and CT${\gamma}$2b were detected in PP cells. Conclusion: PP B cells readily express IgA GLT, PST, and CT. Overall expression patterns of these transcripts were similar in MLN cells. Thus, these results suggest that microenvironment of PP and MLN influences spontaneous IgA CSR, which lacks in systemic lymphoid tissues such as spleen.

Protection of Specific-pathogen-free (Spf) Foals from Severe Equine Herpesvirus Type-1 (Ehv-1) Infection Following Immunization with Non-infectious L-particles

  • Mohd Lila Mohd-Azmi;John Gibson;Frazer Rixon;Lauchlan, John-Mc;Field, Hugh-John
    • Journal of Microbiology
    • /
    • v.40 no.3
    • /
    • pp.183-192
    • /
    • 2002
  • Cells infected With equine herpesvirus type-1 (EHV-1) Produced both infectious and non-infectious Virus-related particles. Compared to the whole virion, non-infectious particles termed L-particles were deter-mined to lack 150 kDa protein, commonly known as nucleocapsid protein. The potential of L-particles to induce immune responses was studied in mice and foals. Intranasal immunization with L-particles or whole virions induced poor IgG antibody responses in mice. Interestingly, despite the poor antibody response, the conferred immunity protected the host from challenge infections. This was indicated by a significant reduction in virus titers in line with recovery towards normal body weight. Subsequently, the test on the usefulness of L-particles as immunizing agents was extended to foals. Immunization of specific-pathogen-free (SPF) foals resulted in similar results. As determined by a complement-fixing-antibody test (CFT), foals seroconverted when they were immunized either with inactivated L-particles or whole virions via intramuscular (i.m.) injections. The presence of the antibody correlated with the degree of protection. Beyond day 1 post challenge infection (p.i.), there was no virus shedding in the nasal mucus of foals immunized with whole EHV-1 virions. Virus shedding was observed in foals Immunized with L-particles but limited to days 6 to 8 p.i. only. In contrast, extended vim shedding was observed in non-immunized foals and it was well beyond day 14 p.i. Viremia was not detected for more than four days except in non-immunized foals. Immunization in mice via intranasal (i.n.) conferred good protection. However, compared to the i.n. route, a greater degree of protection was obtained in foals following immunization via i.m. route. Despite variation in the degree of protection due to different routes of immunization in the two animal species, our results have established significant evidence that immunization with L-particles confers protection in the natural host. It is suggested that non-infectious L-particles should be used as immunizing agents for vaccination of horses against EHV-1 infection.

CD30-Mediated Regulation of Cell Adhesion Molecule Expression on Murine T Cells

  • Nam, Sang-Yun
    • IMMUNE NETWORK
    • /
    • v.3 no.1
    • /
    • pp.8-15
    • /
    • 2003
  • Background: CD30 is a member of TNF receptor family and expressed on lymphocytes and other hematopoietic cells following activation as well as Hodgkin and Reed-Sternberg cells in Hodgkin's lymphoma. In this study, CD30-mediated regulation of cell adhesion molecule expression on normal activated mouse T cells was investigated. Methods: Mouse T cells were activated with anti-CD3 antibody for induction of CD30, which was cross-linked by immobilized anti-CD30 antibody. Results: High level of CD30 expression on T cells was observed on day 5, but only little on day 3 even under culture condition resulting in an identical T cell proliferation, indicating that CD30 expression requires a prolonged stimulation up to 5 days. Cross-linking of CD30 alone altered neither proliferation nor apoptosis of normal activated T cells. Instead, CD30 appeared to promote cell adherence to culture substrate, and considerably upregulated ICAM-1 and, to a lesser extent, ICAM-2 expression on activated T cells, whereas CD2 and CD18 (LFA-1) expression was not affected. None of cytokines known as main regulators of ICAM-1 expression on tissue cells (IL 4, $IFN{\gamma}$ and $IFN{\alpha}$) enhanced ICAM-1 expression in the absence of CD30 signals. On the other hand, addition of $NF-{\kappa}B$ inhibitor, PDTC (0.1 mM) completely abrogated the CD30-mediated upregulation of ICAM-1 expression, but not CD2 and ICAM-2 expression. Conclusion: This results support that CD30 upregulates ICAM-1 expression of T cell and such regulation is not mediated by higher cytokine production but $NF-{\kappa}B$ activation. Therefore, CD30 may play important roles in T-T or T-B cell interaction through regulation of ICAM-1, and -2 expression.