References
- Alexander AM, Crawford M, Bertera S, Rudert WA, Takikawa O, Robbins PD, Trucco M. Indoleamine 2,3-dioxygenase expression in transplanted NOD Islets prolongs graft survival after adoptive transfer of diabetogenic splenocytes. Diabetes. 2002. 51: 356-365. https://doi.org/10.2337/diabetes.51.2.356
- Anjuere F, Luci C, Lebens M, Rousseau D, Hervouet C, Milon G, Holmgren J, Ardavin C, Czerkinsky C. In vivo adjuvantinduced mobilization and maturation of gut dendritic cells after oral administration of cholera toxin. Journal of Immunology. 2004. 173: 5103-5111. https://doi.org/10.4049/jimmunol.173.8.5103
-
Babcock TA, Carlin JM. Transcriptional activation of indoleamine dioxygenase by interleukin 1 and tumor necrosis factor
${\alpha}$ in interferon-treated epithelial cells. Cytokine. 2000. 12: 588-594. https://doi.org/10.1006/cyto.1999.0661 - Belz GT, Heath WR, Carbone FR. The role of dendritic cell subsets in selection between tolerance and immunity. Immunology and Cell Biology. 2002. 80: 463-468. https://doi.org/10.1046/j.1440-1711.2002.01116.x
-
Courtois G, Gilmore TD. Mutations in the NF-
${\kappa}B$ signaling pathway: implications for human disease. Oncogene. 2006. 25:6831-6843. https://doi.org/10.1038/sj.onc.1209939 - Curti A, Aluigi M, Pandolfi S, Ferri E, Isidori A, Salvestrini V, Durelli I, Horenstein AL, Fiore F, Massaia M, Piccioli M, Pileri SA, Zavatto E, D'Addio A, Baccarani M, Lemoli RM. Acute myeloid leukemia cells constitutively express the immunoregulatory enzyme indoleamine 2,3-dioxygenase. Leukemia. 2007. 21: 353-355. https://doi.org/10.1038/sj.leu.2404485
- Elson CO, Ealding W. Generalized systemic and mucosal immunity in mice after mucosal stimulation with cholera toxin. Journal of Immunology. 1984. 132: 2736-2741.
- Fallarino F, Grohmann U, Hwang KW, Orabona C, Vacca C, Bianchi R, Belladonna ML, Fioretti MC, Alegre ML, Puccetti P. Modulation of tryptophan catabolism by regulatory T cells. Nature Immunology. 2003a. 4: 1206-1212. https://doi.org/10.1038/ni1003
- Fallarino F, Grohmann U, Vacca C, Orabona C, Spreca A, Fioretti MC, Puccetti P. T cell apoptosis by kynurenines. Advances in Experimental Medicine and Biology. 2003b. 527: 183-190.
-
Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C, Orabona C, Bianchi R, Belladonna ML, Volpi C, Santamaria P, Fioretti MC, Puccetti P. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor
${\zeta}$ -chain and induce a regulatory phenotype in naive T cells. Journal of Immunology. 2006. 176: 6752-6761. https://doi.org/10.4049/jimmunol.176.11.6752 - Freshney R. Culture of Animal Cells: A Manual of Basic Technique. 1987.
- Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. Journal of Experimental Medicine. 2002. 196: 459-468. https://doi.org/10.1084/jem.20020121
-
Ghosh S, May MJ, Kopp EB. NF-
${\kappa}B$ and Rel proteins: evolutionarily conserved mediators of immune responses. Annual Review of Immunology. 1998. 16: 225-260. https://doi.org/10.1146/annurev.immunol.16.1.225 - Grohmann U, Orabona C, Fallarino F, Vacca C, Calcinaro F, Falorni A, Candeloro P, Belladonna ML, Bianchi R, Fioretti MC, Puccetti P. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nature Immunology. 2002. 3: 1097-1101. https://doi.org/10.1038/ni846
- Gurtner GJ, Newberry RD, Schloemann SR, McDonald KG, Stenson WF. Inhibition of indoleamine 2,3-dioxygenase augments trinitrobenzene sulfonic acid colitis in mice. Gastroenterology. 2003. 125: 1762-1773. https://doi.org/10.1053/j.gastro.2003.08.031
- Hayaishi O. Utilization of superoxide anion by indoleamine oxygenase-catalyzed tryptophan and indoleamine oxidation. Advances in Experimental Medicine and Biology. 1996. 398: 285-289.
-
Hayden MS, Ghosh S. Signaling to NF-
${\kappa}B$ . Genes and Development. 2004. 18: 2195-2224. https://doi.org/10.1101/gad.1228704 -
Hornqvist E, Goldschmidt TJ, Holmdahl R, Lycke N. Host defense against cholera toxin is strongly
$CD4^+$ T cell dependent. Infection and Immunity. 1991. 59: 3630-3638. - Howard L. Wiener. Oral tolerance, an active immunologic process mediated by multiple mechanisms. Journal of Clinical Investigation. 2000. 106: 935-937. https://doi.org/10.1172/JCI11348
-
Li ZW, Chu W, Hu Y, Delhase M, Deerinck T, Ellisman M, Johnson R, Karin M, The
$IKK{\beta}$ subunit of I${\kappa}B$ kinase (IKK) is essential for NF-${\kappa}B$ activation and prevention of apoptosis. Journal of Experimental Medicine. 1999. 189: 1839-1845. https://doi.org/10.1084/jem.189.11.1839 - Jung ID, Lee MG, Chang JH, Lee JS, Jeong YI, Lee CM, Park WS, Han J, Seo SK, Lee SY, Park YM. Blockade of indoleamine 2,3-dioxygenase protects mice against lipopolysaccharideinduced endotoxin shock. Journal of Immunology. 2009. 182:3146-3154. https://doi.org/10.4049/jimmunol.0803104
- Kim HA, Kim KJ, Yoon SY, Lee HK, Im SY. Glutamine inhibits platelet-activating factor-mediated pulmonary tumor metastasis. European Journal of Cancer. 2012. 48: 1730-1738. https://doi.org/10.1016/j.ejca.2011.07.013
-
Kim KJ, Kim HA, Seo KH, Lee HK, Kang BY, Im SY. Cholera toxin breakdowns oral tolerance via activation of canonical NF-
${\kappa}B$ . Cellular Immunology. 2013. 285: 92-99. https://doi.org/10.1016/j.cellimm.2013.09.006 -
Lenardo MJ, Baltimore D. NF-
${\kappa}B$ : a pleiotropic mediator of inducible and tissue specific gene control. Cell. 1989. 58: 227-229. https://doi.org/10.1016/0092-8674(89)90833-7 - Lycke N, Holmgren J. Strong adjuvant properties of cholera toxin on gut mucosal immune responses to orally presented antigens. Immunology. 1986. 59: 301-308.
-
Manches O, Fernandez MV, Plumas J, Chaperot L, Bhardwaj N. Activation of the noncanonical NF-
${\kappa}B$ pathway by HIV controls a dendritic cell immunoregulatory phenotype. Proceedings of the National Academy of Sciences of the United States of America. 2012. 109: 14122-14127. https://doi.org/10.1073/pnas.1204032109 - Mellor AL, Keskin DB, Johnson T, Chandler P, Munn DH. Cells expressing indoleamine 2,3-dioxygenase inhibit T cell responses. Journal of Immunology. 2002. 168: 3771-3776. https://doi.org/10.4049/jimmunol.168.8.3771
- Mellor AL, Munn DH. IDO expression by dendritic cells: Tolerance and tryptophan catabolism. Nature Reviews Immunology. 2004. 4: 762-774. https://doi.org/10.1038/nri1457
- Mellor AL, Sivakumar J, Chandler P, Smith K, Mao D, Munn DH. Prevention of T cell-driven complement activation and inflammation by tryptophan catabolism during pregnancy. Nature Immunology. 2001. 2: 64-68. https://doi.org/10.1038/83183
- Munn DH, Mellor AL. Indoleamine 2,3-dioxygenase and tumorinduced tolerance. Journal of Clinical Investigation. 2007. 117:1147-1154. https://doi.org/10.1172/JCI31178
- Munn DH, Mellor AL. IDO in the Tumor microenvironment: Inflammation, counter-regulation, and tolerance. Trends in Immunology. 2016. 37: 193-207. https://doi.org/10.1016/j.it.2016.01.002
-
Munn DH, Sharma MD, Mellor AL. Ligation of B7-1/B7-2 by Human
$CD4^+$ T Cells Triggers Indoleamine 2,3-Dioxygenase Activity in Dendritic Cells. Journal of Immunology. 2004. 172:4100-4110. https://doi.org/10.4049/jimmunol.172.7.4100 - Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell. 1986. 46: 705-716. https://doi.org/10.1016/0092-8674(86)90346-6
-
Senftleben U, Cao Y, Xiao G, Greten FR, Krahn G, Bonizzi G, Chen Y, Hu Y, Fong A, Sun SC, Karin M. Activation by IKKalpha of a second, evolutionary conserved, NF-
${\kappa}B$ signaling pathway. Science. 2001a. 293: 1495-1499. https://doi.org/10.1126/science.1062677 -
Senftleben U, Li ZW, Baud V, Karin M.
$IKK{\beta}$ is essential for protecting T cells from TNF-${\alpha}$ -induced apoptosis. Immunity. 2001b. 14: 217-230. https://doi.org/10.1016/S1074-7613(01)00104-2 - Shimizu T, Nomiyama S, Hirata F, Hayaishi O. Indoleamine 2,3-dioxygenase. Purification and some properties. Journal of Biological Chemistry. 1978. 253: 4700-4706.
- Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, Boon T, Van den Eynde BJ. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nature Medicine. 2003. 9: 1269-1274. https://doi.org/10.1038/nm934
- Van der Marel AP, Samsom JN, Greuter M, van Berkel LA, O'Toole T, Kraal G, Mebius RE. Blockade of IDO Inhibits Nasal Tolerance Induction. Journal of Immunology. 2007. 179:894-900. https://doi.org/10.4049/jimmunol.179.2.894
- Volpi C, Fallarino F, Bianchi R, Orabona C, De Luca A, Vacca C, Romani L, Gran B, Grohmann U, Puccetti P, Belladonna ML. A GpC-rich oligonucleotide acts on plasmacytoid dendritic cells to promote immune suppression. Journal of Immunology. 2012. 189: 2283-2289. https://doi.org/10.4049/jimmunol.1200497
- Williams NA, Hirst TR, Nashar TO. Immune modulation by the cholera-like enterotoxins: from adjuvant to therapeutic. Immunology Today. 1999. 20: 95-101. https://doi.org/10.1016/S0167-5699(98)01397-8
- Yamamoto S, Hayaishi O. Tryptophan pyrrolase of rabbit intestine. D- and L-tryptophan-cleaving enzyme or enzymes. Journal of Biological Chemistry. 1967. 242: 5260-5266.
- Yanagita M, Hiroi T, Kitagaki N, Hamada S, Ito HO, Shimauchi H, Murakami S, Okada H, Kiyono H. Nasopharyngealassociated lymphoreticular tissue (NALT) immunity: fimbriaespecific Th1 and Th2 cell-regulated IgA responses for the inhibition of bacterial attachment to epithelial cells and subsequent inflammatory cytokine production. Journal of Immunology. 1999. 162: 3559-3565.
-
Yang JM, Rui BB, Chen C, Chen H, Xu TJ, Xu WP, Wei W. Acetylsalicylic acid enhances the anti-inflammatory effect of fluoxetine through inhibition of NF-
${\kappa}B$ , p38-MAPK and ERK1/2 activation in lipopolysaccharide-induced BV-2 microglia cells. Neuroscience. 2014. 275: 296-304. https://doi.org/10.1016/j.neuroscience.2014.06.016