DOI QR코드

DOI QR Code

Cholera Toxin Disrupts Oral Tolerance via NF-κB-mediated Downregulation of Indoleamine 2,3-dioxygenase Expression

  • Kim, Kyoung-Jin (Department of Biological Sciences, College of Natural Sciences, Chonnam National University) ;
  • Im, Suhn-Young (Department of Biological Sciences, College of Natural Sciences, Chonnam National University)
  • Received : 2017.08.04
  • Accepted : 2017.09.25
  • Published : 2017.09.30

Abstract

Cholera toxin (CT) is an ADP-ribosylating bacterial exotoxin that has been used as an adjuvant in animal studies of oral immunization. The mechanisms of mucosal immunogenicity and adjuvanticity of CT remain to be established. In this study, we investigated the role of indoleamine 2,3-dioxygenase (IDO), which participates in the induction of immune tolerance, in CT-mediated breakdown of oral tolerance. When IDO-deficient ($IDO^{-/-}$) mice and their littermates were given oral ovalbumin, significant changes in antibody responses, footpad swelling and $CD4^+$ T cell proliferation were not observed in $IDO^{-/-}$ mice. Feeding of CT decreased IDO expression in mesenteric lymph nodes (MLN) and Peyer's patch (PP). CT-induced downregulation of IDO expression was reversed by inhibitors of nuclear factor-kappa B (NF-${\kappa}B$), pyrrolidine dithiocarbamate and p50 small interfering RNA. IDO expression was downregulated by the NF-${\kappa}B$ inducers lipopolysaccharide and tumor necrosis factor-${\alpha}$. CT dampened IDO activity and mRNA expression in dendritic cells from MLN and PP. These data indicate that CT disrupts oral tolerance by activating NF-${\kappa}B$, which in turn downregulates IDO expression. This study betters the understanding of the molecular mechanism underlying CT-mediated abrogation of oral tolerance.

Keywords

References

  1. Alexander AM, Crawford M, Bertera S, Rudert WA, Takikawa O, Robbins PD, Trucco M. Indoleamine 2,3-dioxygenase expression in transplanted NOD Islets prolongs graft survival after adoptive transfer of diabetogenic splenocytes. Diabetes. 2002. 51: 356-365. https://doi.org/10.2337/diabetes.51.2.356
  2. Anjuere F, Luci C, Lebens M, Rousseau D, Hervouet C, Milon G, Holmgren J, Ardavin C, Czerkinsky C. In vivo adjuvantinduced mobilization and maturation of gut dendritic cells after oral administration of cholera toxin. Journal of Immunology. 2004. 173: 5103-5111. https://doi.org/10.4049/jimmunol.173.8.5103
  3. Babcock TA, Carlin JM. Transcriptional activation of indoleamine dioxygenase by interleukin 1 and tumor necrosis factor ${\alpha}$ in interferon-treated epithelial cells. Cytokine. 2000. 12: 588-594. https://doi.org/10.1006/cyto.1999.0661
  4. Belz GT, Heath WR, Carbone FR. The role of dendritic cell subsets in selection between tolerance and immunity. Immunology and Cell Biology. 2002. 80: 463-468. https://doi.org/10.1046/j.1440-1711.2002.01116.x
  5. Courtois G, Gilmore TD. Mutations in the NF-${\kappa}B$ signaling pathway: implications for human disease. Oncogene. 2006. 25:6831-6843. https://doi.org/10.1038/sj.onc.1209939
  6. Curti A, Aluigi M, Pandolfi S, Ferri E, Isidori A, Salvestrini V, Durelli I, Horenstein AL, Fiore F, Massaia M, Piccioli M, Pileri SA, Zavatto E, D'Addio A, Baccarani M, Lemoli RM. Acute myeloid leukemia cells constitutively express the immunoregulatory enzyme indoleamine 2,3-dioxygenase. Leukemia. 2007. 21: 353-355. https://doi.org/10.1038/sj.leu.2404485
  7. Elson CO, Ealding W. Generalized systemic and mucosal immunity in mice after mucosal stimulation with cholera toxin. Journal of Immunology. 1984. 132: 2736-2741.
  8. Fallarino F, Grohmann U, Hwang KW, Orabona C, Vacca C, Bianchi R, Belladonna ML, Fioretti MC, Alegre ML, Puccetti P. Modulation of tryptophan catabolism by regulatory T cells. Nature Immunology. 2003a. 4: 1206-1212. https://doi.org/10.1038/ni1003
  9. Fallarino F, Grohmann U, Vacca C, Orabona C, Spreca A, Fioretti MC, Puccetti P. T cell apoptosis by kynurenines. Advances in Experimental Medicine and Biology. 2003b. 527: 183-190.
  10. Fallarino F, Grohmann U, You S, McGrath BC, Cavener DR, Vacca C, Orabona C, Bianchi R, Belladonna ML, Volpi C, Santamaria P, Fioretti MC, Puccetti P. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor ${\zeta}$-chain and induce a regulatory phenotype in naive T cells. Journal of Immunology. 2006. 176: 6752-6761. https://doi.org/10.4049/jimmunol.176.11.6752
  11. Freshney R. Culture of Animal Cells: A Manual of Basic Technique. 1987.
  12. Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. Journal of Experimental Medicine. 2002. 196: 459-468. https://doi.org/10.1084/jem.20020121
  13. Ghosh S, May MJ, Kopp EB. NF-${\kappa}B$ and Rel proteins: evolutionarily conserved mediators of immune responses. Annual Review of Immunology. 1998. 16: 225-260. https://doi.org/10.1146/annurev.immunol.16.1.225
  14. Grohmann U, Orabona C, Fallarino F, Vacca C, Calcinaro F, Falorni A, Candeloro P, Belladonna ML, Bianchi R, Fioretti MC, Puccetti P. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nature Immunology. 2002. 3: 1097-1101. https://doi.org/10.1038/ni846
  15. Gurtner GJ, Newberry RD, Schloemann SR, McDonald KG, Stenson WF. Inhibition of indoleamine 2,3-dioxygenase augments trinitrobenzene sulfonic acid colitis in mice. Gastroenterology. 2003. 125: 1762-1773. https://doi.org/10.1053/j.gastro.2003.08.031
  16. Hayaishi O. Utilization of superoxide anion by indoleamine oxygenase-catalyzed tryptophan and indoleamine oxidation. Advances in Experimental Medicine and Biology. 1996. 398: 285-289.
  17. Hayden MS, Ghosh S. Signaling to NF-${\kappa}B$. Genes and Development. 2004. 18: 2195-2224. https://doi.org/10.1101/gad.1228704
  18. Hornqvist E, Goldschmidt TJ, Holmdahl R, Lycke N. Host defense against cholera toxin is strongly $CD4^+$ T cell dependent. Infection and Immunity. 1991. 59: 3630-3638.
  19. Howard L. Wiener. Oral tolerance, an active immunologic process mediated by multiple mechanisms. Journal of Clinical Investigation. 2000. 106: 935-937. https://doi.org/10.1172/JCI11348
  20. Li ZW, Chu W, Hu Y, Delhase M, Deerinck T, Ellisman M, Johnson R, Karin M, The $IKK{\beta}$ subunit of I${\kappa}B$ kinase (IKK) is essential for NF-${\kappa}B$ activation and prevention of apoptosis. Journal of Experimental Medicine. 1999. 189: 1839-1845. https://doi.org/10.1084/jem.189.11.1839
  21. Jung ID, Lee MG, Chang JH, Lee JS, Jeong YI, Lee CM, Park WS, Han J, Seo SK, Lee SY, Park YM. Blockade of indoleamine 2,3-dioxygenase protects mice against lipopolysaccharideinduced endotoxin shock. Journal of Immunology. 2009. 182:3146-3154. https://doi.org/10.4049/jimmunol.0803104
  22. Kim HA, Kim KJ, Yoon SY, Lee HK, Im SY. Glutamine inhibits platelet-activating factor-mediated pulmonary tumor metastasis. European Journal of Cancer. 2012. 48: 1730-1738. https://doi.org/10.1016/j.ejca.2011.07.013
  23. Kim KJ, Kim HA, Seo KH, Lee HK, Kang BY, Im SY. Cholera toxin breakdowns oral tolerance via activation of canonical NF-${\kappa}B$. Cellular Immunology. 2013. 285: 92-99. https://doi.org/10.1016/j.cellimm.2013.09.006
  24. Lenardo MJ, Baltimore D. NF-${\kappa}B$: a pleiotropic mediator of inducible and tissue specific gene control. Cell. 1989. 58: 227-229. https://doi.org/10.1016/0092-8674(89)90833-7
  25. Lycke N, Holmgren J. Strong adjuvant properties of cholera toxin on gut mucosal immune responses to orally presented antigens. Immunology. 1986. 59: 301-308.
  26. Manches O, Fernandez MV, Plumas J, Chaperot L, Bhardwaj N. Activation of the noncanonical NF-${\kappa}B$ pathway by HIV controls a dendritic cell immunoregulatory phenotype. Proceedings of the National Academy of Sciences of the United States of America. 2012. 109: 14122-14127. https://doi.org/10.1073/pnas.1204032109
  27. Mellor AL, Keskin DB, Johnson T, Chandler P, Munn DH. Cells expressing indoleamine 2,3-dioxygenase inhibit T cell responses. Journal of Immunology. 2002. 168: 3771-3776. https://doi.org/10.4049/jimmunol.168.8.3771
  28. Mellor AL, Munn DH. IDO expression by dendritic cells: Tolerance and tryptophan catabolism. Nature Reviews Immunology. 2004. 4: 762-774. https://doi.org/10.1038/nri1457
  29. Mellor AL, Sivakumar J, Chandler P, Smith K, Mao D, Munn DH. Prevention of T cell-driven complement activation and inflammation by tryptophan catabolism during pregnancy. Nature Immunology. 2001. 2: 64-68. https://doi.org/10.1038/83183
  30. Munn DH, Mellor AL. Indoleamine 2,3-dioxygenase and tumorinduced tolerance. Journal of Clinical Investigation. 2007. 117:1147-1154. https://doi.org/10.1172/JCI31178
  31. Munn DH, Mellor AL. IDO in the Tumor microenvironment: Inflammation, counter-regulation, and tolerance. Trends in Immunology. 2016. 37: 193-207. https://doi.org/10.1016/j.it.2016.01.002
  32. Munn DH, Sharma MD, Mellor AL. Ligation of B7-1/B7-2 by Human $CD4^+$ T Cells Triggers Indoleamine 2,3-Dioxygenase Activity in Dendritic Cells. Journal of Immunology. 2004. 172:4100-4110. https://doi.org/10.4049/jimmunol.172.7.4100
  33. Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell. 1986. 46: 705-716. https://doi.org/10.1016/0092-8674(86)90346-6
  34. Senftleben U, Cao Y, Xiao G, Greten FR, Krahn G, Bonizzi G, Chen Y, Hu Y, Fong A, Sun SC, Karin M. Activation by IKKalpha of a second, evolutionary conserved, NF-${\kappa}B$ signaling pathway. Science. 2001a. 293: 1495-1499. https://doi.org/10.1126/science.1062677
  35. Senftleben U, Li ZW, Baud V, Karin M. $IKK{\beta}$ is essential for protecting T cells from TNF-${\alpha}$-induced apoptosis. Immunity. 2001b. 14: 217-230. https://doi.org/10.1016/S1074-7613(01)00104-2
  36. Shimizu T, Nomiyama S, Hirata F, Hayaishi O. Indoleamine 2,3-dioxygenase. Purification and some properties. Journal of Biological Chemistry. 1978. 253: 4700-4706.
  37. Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, Boon T, Van den Eynde BJ. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nature Medicine. 2003. 9: 1269-1274. https://doi.org/10.1038/nm934
  38. Van der Marel AP, Samsom JN, Greuter M, van Berkel LA, O'Toole T, Kraal G, Mebius RE. Blockade of IDO Inhibits Nasal Tolerance Induction. Journal of Immunology. 2007. 179:894-900. https://doi.org/10.4049/jimmunol.179.2.894
  39. Volpi C, Fallarino F, Bianchi R, Orabona C, De Luca A, Vacca C, Romani L, Gran B, Grohmann U, Puccetti P, Belladonna ML. A GpC-rich oligonucleotide acts on plasmacytoid dendritic cells to promote immune suppression. Journal of Immunology. 2012. 189: 2283-2289. https://doi.org/10.4049/jimmunol.1200497
  40. Williams NA, Hirst TR, Nashar TO. Immune modulation by the cholera-like enterotoxins: from adjuvant to therapeutic. Immunology Today. 1999. 20: 95-101. https://doi.org/10.1016/S0167-5699(98)01397-8
  41. Yamamoto S, Hayaishi O. Tryptophan pyrrolase of rabbit intestine. D- and L-tryptophan-cleaving enzyme or enzymes. Journal of Biological Chemistry. 1967. 242: 5260-5266.
  42. Yanagita M, Hiroi T, Kitagaki N, Hamada S, Ito HO, Shimauchi H, Murakami S, Okada H, Kiyono H. Nasopharyngealassociated lymphoreticular tissue (NALT) immunity: fimbriaespecific Th1 and Th2 cell-regulated IgA responses for the inhibition of bacterial attachment to epithelial cells and subsequent inflammatory cytokine production. Journal of Immunology. 1999. 162: 3559-3565.
  43. Yang JM, Rui BB, Chen C, Chen H, Xu TJ, Xu WP, Wei W. Acetylsalicylic acid enhances the anti-inflammatory effect of fluoxetine through inhibition of NF-${\kappa}B$, p38-MAPK and ERK1/2 activation in lipopolysaccharide-induced BV-2 microglia cells. Neuroscience. 2014. 275: 296-304. https://doi.org/10.1016/j.neuroscience.2014.06.016