• 제목/요약/키워드: Natural hazard

검색결과 391건 처리시간 0.035초

Research Trends on External Event Identification and Screening Methods for Safety Assessment of Nuclear Power Plant (원자력발전소 안전성 평가를 위한 외부사건 식별 및 선별 방법 연구동향)

  • Kim, Dongchang;Kwag, Shinyoung;Kim, Jitae;Eem, Seunghyun
    • Journal of the Society of Disaster Information
    • /
    • 제18권2호
    • /
    • pp.252-260
    • /
    • 2022
  • Purpose: As the intensity and frequency of natural hazards are increasing due to climate change, external events that affecting nuclear power plants(NPPs) may increase. NPPs must be protected from external events such as natural hazards and human-induced hazards. External events that may occur in NPPs should be identified, and external events that may affect NPPs should be identified. This study introduces the methodology of identification and screening methods for external events by literature review. Method: The literature survey was conducted on the identification and screening methods of external events for probabilistic safety assessment of NPPs. In addition, the regulations on the identification and screening of external events were investigated. Result: In order to minimize the cost of external event impact analysis of nuclear power plants, research on identifying and screening external events is being conducted. In general, in the identification process, all events that can occur at the NPPs are identified. In the screening process, external events are selected based on qualitative and quantitative criteria in most studies. Conclusions: The process of identifying and screening external events affecting NPPs is becoming important. This paper, summarize on how to identify and screen external events for a probabilistic safety assessment of NPPs. It is judged that research on bounding analysis and conservative analysis methods performed in the quantitative screening process of external events is necessary.

An Analysis of Hydraulic Effect due to the Outflow of Paldang Dam at Hangang Parks (팔당댐 방류량에 따른 한강 시민공원의 수리학적 영향 분석)

  • Lee, Jae-Joon;Kwak, Chang-Jae;Lee, Sang-Won
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • 제8권6호
    • /
    • pp.101-111
    • /
    • 2008
  • Hangang Parks have been played an important role as the source of various Civilian activities by providing a natural space near Han River ever since it was developed. Due to the local-heavy rain caused by recent climate change, the Hangang Parks tends to be easily overflowed. Evacuation of the park in emergency and its controlled system should be made for the sake of Civilian's safety. In this study, various basic data and several parameters were analyzed to simulate the hydraulic effect of Hangang Parks based on the outflow in $P1/4{\div}1/4^3$ Dam. Rising effects of flood water level were investigated through the one-dimensional and twodimensional numerical hydraulic models. Relationships of water level and travel time of flood between key station and centeral part of each park were also identified. It can be used to forecast the future flood water level of each individual park in Hangang Parks. Obtained results can be used to establish the rational plan of usage, management, citizen's safety, and emergency action plan of the Hangang Parks as the flood is occurred from the outflow of Paldang dam.

A Study on the Coping Behavior of Older People in the Warning Phase of Disaster (재난 시 노인의 대처행동에 관한 연구)

  • Chung, Soon-Dool;Park, Hyun-Ju;Choi, Yeo-Hee;Lee, Ji-Hyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • 제8권5호
    • /
    • pp.71-76
    • /
    • 2008
  • The purposes of this study were to examine the coping behavior of the elderly in the warning phase of disaster and to explore factors influencing the coping behavior of the elderly. Data were collected from 130 senior citizens aged over 60 who are residing in Pyungchang and Injae of Kangwon province which had damaged by flood disaster in 2006. Perry & Lindell (1997)'s index, a series of six categories that represent coping behaviors which progressively approximate the action of evacuating in the warning phase of disasters was used. Results showed that respondents have high coping skills. Although Activities of Daily Living (ADL) has positive influence on the coping behavior, length of residence has negative effect on the coping behavior of the elderly. This finding proves the elderly are not uncompliant or uncooperative population in the warning phase of disaster. This result also emphasizes the importance of rapid and accurate giving of public warning system of disaster and necessity of prior notification of useful information about natural disaster and effective evacuation plan for the elderly.

Ecological Risk Assessment of Pharmaceuticals in the Surface Water Near a Pharmaceutical Manufacturing Complex in Korea (제약단지 인접 지역 지표수의 잔류 의약물질 생태위해성평가)

  • Park, Suhyun;Kang, Habyeong;Shin, Hyesoo;Ryoo, Ilhan;Choi, Kyungho;Kho, Younglim;Park, Kyunghwa;Kim, Kyungtae;Ji, Kyunghee
    • Journal of Environmental Health Sciences
    • /
    • 제46권1호
    • /
    • pp.45-64
    • /
    • 2020
  • Objectives: Limited information is available on the presence and associated ecological risks of pharmaceutical residues in aquatic environments near pharmaceutical manufacturing areas in Korea. In this study, we investigated the current state of pharmaceutical contamination and its associated ecological risks in streams near a pharmaceutical manufacturing complex. Methods: Seven pharmaceuticals (acetaminophen, clarithromycin, diclofenac, diphenhydramine, ibuprofen, mefenamic acid and roxithromycin) were measured in water samples collected from the streams near a pharmaceutical manufacturing complex. A predicted no-effect concentration (PNEC) was derived using either the assessment factor method or species sensitivity distribution method. In addition, a hazard quotient for each pharmaceutical was calculated by dividing its measured environmental concentration by its PNEC. Results: Samples collected downstream from the wastewater treatment plant (WWTP) had higher concentrations of pharmaceuticals than those collected from the reference site (upstream). Moreover, pharmaceutical concentrations were greater in ambient water than in the final effluent from the WWTP, which suggested that non-point sources were contributing to the contamination of the ambient water environment. Some of the target pharmaceuticals exhibited a hazard quotient >1, indicating that their potential ecological effects on the aquatic environment near the pharmaceutical industrial area should not be ignored. Conclusion: This study demonstrated that the pharmaceutical manufacturing area was contaminated with residual drugs, and that there was a possible non-point source near the WWTP effluent discharge area. The results of this study will aid in the development of management plans for pharmaceuticals, particularly in hotspots such as pharmaceutical industrial sites and their vicinities.

Physical Properties of Lightweight and Normal Weight Concretes due to Water-Cement Ratio Changes (물-시멘트비 변화에 따른 경량콘크리트와 일반콘크리트의 물리적 성질)

  • Lee, Chang-Soo;Kim, Jae-Nam;Lim, Youn;Ma, Moon-Hak
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • 제9권4호
    • /
    • pp.11-20
    • /
    • 2009
  • By using the artificial lightweight aggregate for the natural aggregate depletes and destruction of environment and the application of lightweight concrete in structure, the lightweight concrete is manufactured. The fundamental characteristics by the waterbinder ratio was evaluated. It is suggested the method to control of pre-absorbed water of the lightweight aggregate. Lightweight concrete with pre-absorbed aggregate has similar characteristics compared to normal weight concrete regardless of water-binder ratio. According to the water-binder ratio, the drying condition, and the rebar, the unit mass of the lightweight concrete showed the reduction of 14.6${\sim}$21.0% as the range of 1,668${\sim}$1,998 $kg/m^3$ in comparison to the normal weight concrete. The lightweight aggregate pre-absorbed water showed the deferent evaporation quantity according to the water-binder ratio. As the water-binder ratio is lower, the oven dry vapour water is larger, therefore the internal curing water is increasing. In the same water-binder, comparing the normal concrete the lightweight concrete shows lower compressive strength which is due to the different strength of an aggregate. In the air dry curing, the normal weight concrete has a lower strength improvement effect in w/c 0.3 than the ratio 0.4 and 0.5. However, the strength improvement effect has increasing as the water-binder ratio was low in the light concrete.

INVESTIGATION OF BAIKDU-SAN VOLCANO WITH SPACE-BORNE SAR SYSTEM

  • Kim, Duk-Jin;Feng, Lanying;Moon, Wooil-M.
    • Proceedings of the KSRS Conference
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.148-153
    • /
    • 1999
  • Baikdu-san was a very active volcano during the Cenozoic era and is believed to be formed in late Cenozoic era. Recently it was also reported that there was a major eruption in or around 1002 A.D. and there are evidences which indicate that it is still an active volcano and a potential volcanic hazard. Remote sensing techniques have been widely used to monitor various natural hazards, including volcanic hazards. However, during an active volcanic eruption, volcanic ash can basically cover the sky and often blocks the solar radiation preventing any use of optical sensors. Synthetic aperture radar(SAR) is an ideal tool to monitor the volcanic activities and lava flows, because the wavelength of the microwave signal is considerably longer that the average volcanic ash particle size. In this study we have utilized several sets of SAR data to evaluate the utility of the space-borne SAR system. The data sets include JERS-1(L-band) SAR, and RADARSAT(C-band) data which included both standard mode and the ScanSAR mode data sets. We also utilized several sets of auxiliary data such as local geological maps and JERS-1 OPS data. The routine preprocessing and image processing steps were applied to these data sets before any attempts of classifying and mapping surface geological features. Although we computed sigma nought ($\sigma$$^{0}$) values far the standard mode RADARSAT data, the utility of sigma nought image was minimal in this study. Application of various types of classification algorithms to identify and map several stages of volcanic flows was not very successful. Although this research is still in progress, the following preliminary conclusions could be made: (1) sigma nought (RADARSAT standard mode data) and DN (JERS-1 SAR and RADARSAT ScanSAR data) have limited usefulness for distinguishing early basalt lava flows from late trachyte flows or later trachyte flows from the old basement granitic rocks around Baikdu-san volcano, (2) surface geological structure features such as several faults and volcanic lava flow channels can easily be identified and mapped, and (3) routine application of unsupervised classification methods cannot be used for mapping any types of surface lava flow patterns.

  • PDF

Deformation Behavior of Underground Pipe with Controlled Low Strength Materials with Marine Dredged Soil (해양준설토 CLSM을 이용한 지하매설관 변형특성)

  • Lee, Kwan-Ho;Kim, Ju-Deuk;Hyun, Seong-Cheol;Song, Yong-Seon;Lee, Byung-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • 제7권5호
    • /
    • pp.129-137
    • /
    • 2007
  • It is very urgent to research the proper recycling method of marine dredged soil as construction material for environmental conservation. Couple of developed countries have been lots of related researches on recycling of marine dredged soil for marine environmental conservation. This is highly imperative in our country. A small-scaled model test for underground pipe has been conducted on the use of controlled low strength materials with marine dredged soil. The flexible pipe, which is called PVC, was used. Four different testing materials, such as natural sand, insitu-soil, sand-CLSM with marine dredged soil and insitu-soil CLSM with marine dredged soil, were used. The vertical and lateral displacement of pipe with CLSM is one tenth of common granular materials. Also, the use of CSLM showed lower lateral and vertical pressure than that of common granular materials. The main reason is the effect of cement hardening of CLSM. This could increase of the stiffness of pipe with backfill materials. In this study, the data presented show that marine dredged soil and in-situ soil can be successfully used in CLSM and reduce the deformation and earth pressure on flexible pipe.

On the Stationarity of Rainfall Quantiles: 1. Application and Evaluation of Conventional Methodologies (확률강우량의 정상성 판단: 1. 기존 방법의 적용 및 평가)

  • Jung, Sung-In;Yoo, Chul-Sang;Yoon, Yong-Nam
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • 제7권5호
    • /
    • pp.79-88
    • /
    • 2007
  • This study evaluated the statistical stationarity of rainfall quantiles as well as the rainfall itself. The conventional methodologies like the Cox-Stuart test for trend and Dickey-Fuller test for a unit root used for testing the stationarity of a time series were applied and evaluated their application to the rainfall quantiles. As results, first, no obvious increasing or decreasing trend was found for the rainfall in Seoul, which was also found to be a stationary time series based on the Dickey-Fuller test. However, the Cox-Stuart test for the rainfall quantiles show some trends but not in consistent ways of increasing or decreasing. Also, the Dickey-Fuller test for a unit root shows that the rainfall quantiles are non-stationary. This result is mainly due to the difference between the rainfall data and rainfall quantiles. That is, the rainfall is a random variable without any trend or non-stationarity. On the other hand, the rainfall quantiles are estimated by considering all the data to result in high correlation between their consecutive estimates. That is, as the rainfall quantiles are estimated by adding a stationary rainfall data continuously, it becomes possible for their consecutive estimates to become highly correlated. Thus, it is natural for the rainfall quantiles to be decided non-stationary if considering the methodology used in this study.

Slope Stability by Variation of Rainfall Characteristic for Long Period (장기간 강우특성 변화에 따른 국내 사면의 안정성)

  • Lee, Jeong-Ju;Kim, Jae-Hong;Hwang, Young-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • 제30권6호
    • /
    • pp.51-59
    • /
    • 2014
  • Shallow landslides and debris flows are a common form of soil slope instability in South Korea. These events may be generally initiated as a result of intense rainfall or lengthening rainfall duration because of the effects of climate change. This paper presents the evaluation of rainfall-induced natural soil slope stability and reinforced soil slope instability under vertical load (railway or highway load) throughout South Korea based on quantitative analysis obtained from 58 sites rainfall observatories for 38 years. The slope stability was performed for infinite and geogrid-reinforced soil slopes by taking an average of maximum rainfall every ten years from 1973 to 2010. Seepage analysis is carried out on unsaturated soil slope using the maximum rainfall at each site, and then the factor of safety was calculated by coupled analysis using saturated and unsaturated strength parameters. The contour map of South Korea shows four stages in 10-year-time for the degree of landslide hazard. The safety factor map based on long term observational data will help prevent rainfall-induced soil slope instability for appropriate design of geotechnical structures regarding disaster protection.

Analysis of Radioactivity in Coal Fly Ash (비산석탄회의 방사능 농도 분석)

  • Shin, Hyun-Sang;Lee, Myung-Ho;Kim, Mi-Kyung;Park, Doo-Wun;Lee, Chang-Woo;Rhee, Dong-Seok
    • Journal of Radiation Protection and Research
    • /
    • 제24권4호
    • /
    • pp.187-193
    • /
    • 1999
  • The specific radioactivity concentrations in the coal fly ash obtained from heat producing stations in Korea were analyzed and its radiological hazard for reuse in construction purpose was evaluated. The concentrations of uranium isotopes in the real fly ash measured by TBP solvent extraction method and $\alpha$-spectrometer were found to be about 116.1 Bq $kg^{-1}$ for $^{238}U$, 5.01 Bq $kg^{-1}$ for $^{235}U$, and 121.2 Bq $kg^{-1}$ for $^{234}U$, respectively. The activity ratio of $^{234}U/^{238}U$, in the coal fly ash was in $1.04\;{\pm}\;0.03$, which is similar to that of uncontaminated Korean soil in natural conditions (1.14). The specific radioactivities of $^{226}Ra,\;^{232}Th,\;and\;^{40}K$ in the coal fly ash were also determined using $\gamma$-spectrometer with a HPGe detector The results showed that $^{226}Ra,\;^{232}Th,\;and\;^{40}K$ in the coal fly ash were in concentrations of $101.7{\sim}113.9$, $39.5{\sim}54.2\;and\;315.0{\sim}990.6$ Bq $kg^{-1}$, respectively. With the specific radioactivities obtained from $\gamma$-spectrometric measurements of the coal fly ash, its radiological hazard for reuse was evaluated. The result showed that the radioactivity of the coal fly ash was in permissible level.

  • PDF