• Title/Summary/Keyword: Natural filler

Search Result 93, Processing Time 0.027 seconds

Effect of Silica Contents on the Vulcanizates Structure and Physical Properties in ENR/BR Blend Compounds

  • Sanghoon Song;Junhwan Jeong;Donghyuk Kim;Kiwon Hwang;Sungwook Chung;Wonho Kim
    • Elastomers and Composites
    • /
    • v.59 no.1
    • /
    • pp.8-16
    • /
    • 2024
  • As regulations on greenhouse gas emission have strengthened globally, the demand for improved fuel efficiency in automobiles continues to rise. In response, the tire industry is actively conducting research to improve fuel efficiency by enhancing tire performance. In this study, silica-filled epoxidized natural rubber (ENR)/butadiene rubber (BR) blend compounds were manufactured according to ENR types and silica contents, and their physical properties and vulcanizate structure were evaluated. ENR-50, which has a higher epoxide content than ENR-25, exhibited stronger filler-rubber interaction, resulting in superior abrasion resistance. In addition, because of its high glass transition temperature (Tg), the wet grip performance of ENR-50 improved, even though the rolling resistance increased. Increasing the amount of silica had little effect on the abrasion resistance due to the increase in filler-rubber interaction and decrease in toughness. In addition, ENR-50 exhibited better wet grip performance; however, the rolling resistance increased. The results indicated that truck bus radial (TBR) tire tread compounds can be designed by applying ENR-50 to improve wear resistance and wet grip performance. In addition, by applying ENR-25 and reducing the silica contents improve fuel efficiency.

Effects of Silane Structure on Composite Interaction Parameter (αC)) of Silica Filled Rubber Compounds (실란 구조가 실리카 복합소재 내 구조발달 상호계수(αC)에 미치는 영향)

  • Kim, Sung Min;Kim, Kwang Jea
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.411-416
    • /
    • 2014
  • Due to the polar characteristics of silica compared to carbon black, the degree of silica dispersion, which affects the mechanical properties of rubber compounds, is an important issue. Wolff first introduced the in-rubber structure of particles (${\alpha}_F$) to express the structure development in the compounds; however, with the introduction of bifunctional silanes, his theory could not explain the 3-dimensional network structure of the compounds. Later his theory was expanded to express the composite interaction parameter (in-rubber structure of the compound) (${\alpha}_C$), which included Wolff's filler-filler interaction parameter (${\alpha}_F$), however, there was no reported experimental result proving the theory. This research first experimentally expressed the in-rubber structure of the compound ${\alpha}_C$ (= ${\alpha}_F+{\alpha}_{FP}$(filler-silane-rubber interaction parameter) + ${\alpha}_P$ (rubber-rubber interaction parameter)) upon mono- and bifunctional silane treated silica filled natural rubber (NR) compounds. Using different structure silanes, i.e. PTES, OTES, TESPD, and TESPT, the ${\alpha}_C$ value of each compound was measured and calculated. The ${\alpha}_C$ value of TESPT treated silica filled compound was 1.64, which composed of ${\alpha}_F$ (0.99), ${\alpha}_{FP}$ (0.31), and ${\alpha}_P$ (0.34).

A Study on Recycling of EPDM Reclaimed Rubber (폐 EPDM 고무의 재활용을 위한 기초적 연구)

  • Jang, Doo-Hee;Kim, Ji-Hoon;Kim, Young-Ju
    • Journal of Environmental Science International
    • /
    • v.19 no.3
    • /
    • pp.365-370
    • /
    • 2010
  • In this study, we carried out the evaluation of EPDM(Ethylene Propylene Diene Monomer) reclaimed rubber mixing with natural rubber at various mixing ratio to reuse as rubber filler. The scorch time and moony viscosity was analyzed to evaluate the effect of cure behavior. And also, we analyzed the tensile strength, the elongation at break and cure time to evaluate the variation of cure behavior. As the results, the scorch time and optimal cure time was decreased according to the increasing of EPDM reclaimed rubber. However, the moony viscosity was increased at each mixing ratio. In case of the added EPDM reclaimed rubber was 20 phr(parts by weight per 100 parts by weight of rubber), the hardness and specific gravity was increased a little. The hardness and specific gravity was increased in rapidly under 40 phr of the added EPEM reclaimed rubber. The tensile strength and elongation at break of the compound of natural and EPDM reclaimed rubber was rapidly decreased compared with its natural rubber when the ratio of adding EPDM reclaimed rubber was over 40 phr.

Fabrication of matrix graphite with a high degree of graphitization for spherical fuel elements by using natural microcrystalline graphite fillers

  • Xinlei Cao;Shen Lv;Kun Xu;Xiaohui Wang;Jingxu Wang;Bing Liu;Ke Shen
    • Nuclear Engineering and Technology
    • /
    • v.56 no.11
    • /
    • pp.4851-4858
    • /
    • 2024
  • Matrix graphite is used as a structural material, thermal conductor, moderator, and secondary fission product barrier for fuel elements in high-temperature gas-cooled reactors (HTRs). Due to its high graphitization degree and compressibility, natural flake graphite (NFG) is used as the main filler in traditional A3-3 matrix graphite, whereas artificial graphite (AG), with a lower graphitization degree than NFG, serves as an additive for toughness and gas permeability. Matrix graphite could be improved in terms of thermal conductivity, oxidation resistance, and irradiation performance by increasing the degree of graphitization. However, reports on the development of new matrix graphite formulations are scarce. In this study, MG-20 matrix graphite was prepared by mixing 60 wt % NFG, 20 wt% natural microcrystalline graphite (MG), and 20 wt% phenolic resin. Due to the high graphitization degree (higher than AG) and low coefficient of thermal expansion (CTE) of MG, MG-20 exhibited higher thermal conductivity (~6%) and lower CTE (~2.4%) than A3-3. Thus, MG-20 with higher graphitization degree and better thermal properties than A3-3 could improve the performance of HTR fuel elements in the future.

Effect of Bentonite on the Mechanical Properties of ABS Resin (Bentonite가 ABS 수지의 기계적 물성에 미치는 영향)

  • Don, Yoon-Seung;Shim, Mi-Ja;Kim, Sang-Wook
    • Applied Chemistry for Engineering
    • /
    • v.5 no.6
    • /
    • pp.981-989
    • /
    • 1994
  • For the development of new material used bentonite in ceramic/organic material composite, ABS(acrylonitrile-butadiene-styrene) material was used as a matrix polymer and a series of bentonite was blended together. This bentonite, filler like talc or mica for plastic material, was used since natural bentonite(Ca type) is easily obtainable in Korea, Na-bentonite changed from natural bentonite by $Na_2CO_3$ based on the specified compositions, changes in the static and dynamic mechanical properties. It was discovered that the increased content of natural and Na- bentonite results in higher modulus with reduced impact strength. And Rockwell hardness was constant. And Na- bentonite filled polymer showed improvement in impact strength and lower in modulus as the natural bentonite filled polymer. The storage modulus(E') of Na- bentonite filled ABS resin was higher than that of Ca- bentonite filled ABS resin, while higher temperature, storage modulus(E') decreased. At higher frequency, tan ${\delta}$ peak was shifted at high temperature.

  • PDF

A Study on the Ultraviolet Aging Characteristics of Outdoor Polymeric Insulating Materials (옥외용 고분자 절연재료의 자외선 열화특성 연구)

  • Kim, Yeong-Seong;Jeong, Sun-Ok
    • Korean Journal of Materials Research
    • /
    • v.9 no.4
    • /
    • pp.409-413
    • /
    • 1999
  • Recently, the polymeric insulators have been accepted in several countries for the outdoor high voltage applications. In comparison with the conventional porcelain, polymeric insulators offer various advantages such as light weight, superior vandal resistance and better contamination performance. The outdoor polymeric insulating materials such as silicone rubber, ethylene propylene diene monomer(EPDM), ethylene vinyl acetate(EVA) and epoxy are aged such as silicone rubber, ethylene propylene diene monomer(EPDM), ethylene vinyl acetate(EVA) and epoxy are aged under the various natural environment with the long-term performance in outdoor. In this paper, the effects of UV-under the various natural environment with the long-term performance in outdoor. In this paper, the effects of UV-ray on the surface of silicone rubber were investigated by using the weather-Ometer. The accelerated aging stresses were simulated by UV radiation, high temperature and humidity as well as water spray. These aging characteristics were examined through contact angle measurements, tracking resistance test, FT-IR and SEM/EDS analysis. The experimental results showed that tracking resistance decreases with increase in the UV-ray irradiation period. But the surface of silicone rubber kept hydrophobicity. It is found that the inorganic filler such as)$ Al(OH_3$ improves tracking resistance and the $Tio_2$is very effective in preventing degradation of silicone rubber surface from UV-ray.

  • PDF

The Leakage Reduction of Natural Inorganic Powder Compound Applying Subsurface Structural Weak Part (지하구조물 취약부에 적용한 천연 무기질계 분말형 혼화제의 누수저감효과)

  • Yoon, Sung-Hwan;Seo, Hyun-Jae;Lee, Hye-Ryung;Park, Jin-Sang;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.19-22
    • /
    • 2011
  • For underground structures that are exposed to environmental conditions, the declination of the durability of concrete occurs easily because of leakages from high hydraulic pressure and the frequent contact of water due to environmental factors. Therefore this study is to confirm that the leakage reduction of natural inorgnic powder compound applying subsurface structural weak part and make the performance improvement of concrete as an objective. The test was done by making the rebar, flat tie, nail and film infiltration and each of its water tank and cylindrical test body then after pouring water to each of the test body, the test observe the change of the water tank surface absorbed condition and leakage of each specimen with respect to time. As a conclusion, the test was observed that this water proofing admixture has better watertightness from the beginning of the setting time(when it hardens), the ettringite and the thaumasite generates a large quantity of hydration products that controls the formation in a large opening and the CSH produced by pozzolan reaction makes a dent at this opening.

  • PDF

Investigations on Partial Discharge, Dielectric and Thermal Characteristics of Nano SiO2 Modified Sunflower Oil for Power Transformer Applications

  • Nagendran, S.;Chandrasekar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1337-1345
    • /
    • 2018
  • The reliability of power transmission and distribution depends up on the consistency of insulation in the high voltage power transformer. In recent times, considering the drawbacks of conventional mineral oils such as poor biodegradability and poor fire safety level, several research works are being carried out on natural ester based nanofluids. Earlier research works show that sunflower oil has similar dielectric characteristics compared with mineral oil. BIOTEMP oil which is now commercially available in the market for transformers is based on sunflower oil. Addition of nanofillers in the base oil improves the dielectric characteristics of liquid insulation. Only few results are available in the literature about the insulation characteristics of nano modified natural esters. Hence understanding the influence of addition of nanofillers in the dielectric properties of sunflower oil and collecting the database is important. Considering these facts, present work contributes to investigate the important characteristics such as partial discharge, lightning impulse, breakdown strength, tandelta, volume resistivity, viscosity and thermal characteristics of $SiO_2$ nano modified sunflower oil with different wt% concentration of nano filler material varied from 0.01wt% to 0.1wt%. From the obtained results, nano modified sunflower oil shows better performance than virgin sunflower oil and hence it may be a suitable candidate for power transformer applications.

Study on the discourse functions of Ranhou in Mandarin Chinese - Focused on radio call-in programme (현대중국어 '연후(然後)'의 담화기능 소고 - 전화참여 라디오 프로그램을 대상으로)

  • Park, Chan Wook
    • Cross-Cultural Studies
    • /
    • v.22
    • /
    • pp.329-354
    • /
    • 2011
  • This paper aims to probe into the meaning of Ranhou in Mandarin Chinese and to account for discourse functions of it in radio call-in programme. For this purpose, the present study investigates the meaning of Ran and Hou repectively at first and explains the change of meaning of Ranhou, because we assume that Ranhou is compounded by Ran and Hou, and the core meaning is derived from its compounded meaning. Then we examine which time category Ranhou belongs to more based on the concept of time(reference, event, discourse) in Schiffrin(1987), and examine also where it is located within turn. Following this examination, we analysis and explain discourse functions what it is situated. Therethrough, we understand that 1) Ran has 'agreement or confirmation of preceded utterance' therefore has anaphoric meaning, and Hou has 'after' in the meaning cline: back of body-back part-behind-after-retarded(proposed by Heine et al. 1991), so that Ranhou has 'after agreement or confirmation of preceded utterance of mine' and extends to 'on premise preceded utterance or event' furthermore, and therefore can have possibility having various functions; 2) Ranhou has various functions in natural language in spite of the institutional setting. It can indicate (1) temporal relation of events, (2) logic relation of two(or more) events, e.g. causality, elaboration, concession, list, (3) turn maintence, acquisition, management, (4) verbal filler.

Study on the Characteristic of Elastomer Composite Containing Tungsten Powder

  • Chung, Kyungho
    • Elastomers and Composites
    • /
    • v.56 no.1
    • /
    • pp.6-11
    • /
    • 2021
  • In order to develop an ultra-high-density elastomeric material for substitution of steel dynamic dampers, a new curing system and technique for high-loading of the filler were examined in this study. Mechanochemical modification of chloroprene rubber (MAH-g-CR) using an internal mixer was carried out with maleic anhydride (MAH) as a reactive monomer. The optimum amount of MAH was 10 phr and the efficient grafting of MAH on CR could be achieved at a mixing temperature of 100℃. After preparing MAH-g-CR, 50 mol% epoxidized natural rubber (ENR 50) was blended with MAH-g-CR to develop a "self-curable rubber blend system" via reaction between the functional groups of the elastomeric matrices without the curing agent and additives. The content of ENR 50 was fixed at 30 wt.% throughout evaluation of the curing behavior of the MAH-g-CR/ENR blend. Tungsten powder was added to the MAH-g-CR/ENR matrix up to 60 vol.% to obtain ultra-high-density, and the maximum density obtained was 7.57 g/㎤. Stable ts2 (scorch time) and t90 (90% cure time) could be obtained even when tungsten powder was incorporated up to 60 vol.%. In addition, the tensile strength and damping properties of MAH-g-CR/ENR containing 60 vol.% of tungsten were better than those of CR containing 60 vol.% of tungsten.